Air Quality Assessment Kirby Road Widening

City of Vaughan

SLR Project No: 241.20105.00000 September 2021

SLR

Air Quality Assessment Kirby Road Widening

SLR

From Jane Street to Dufferin Street

SLR Project No: 241.20105.00000

Submitted by: SLR Consulting (Canada) Ltd. 150 Research Lane, Suite 105 Guelph, Ontario, N1G 4T2

Prepared for: HDR Inc. 100 York Blvd, Suite 300 Richmond Hill, ON L4B1J8

September 2021

Prepared by:

Richard Xiao, B. Sc Air Quality Scientist

Reviewed by:

and Int

Laura Clark, B.Eng. Air Quality Scientist

Reviewed by:

In Stys 7.

Jason Slusarczyk, P.Eng. Principal, Air Quality Specialist

Distribution:

1 copy – City of Vaughan 1 copy – SLR Consulting (Canada) Ltd.

TABLE OF CONTENTS

1.0	INTRO	DUCTION		. 1
	1.1	Study Ol	pjectives	1
	1.2	Contami	nants of Interest	3
	1.3	Applicab	le Guidelines	4
	1.4	General	Assessment Methodology	5
2.0	BACKG	ROUND A	MBIENT DATA	. 6
	2.1	Overviev	ν	6
	2.2	Selection	n of Relevant Ambient Monitoring Stations	7
	2.3	Detailed	Analysis of Selected Worst-case Monitoring Stations	9
3.0	LOCAL	AIR QUAL	ITY ASSESSMENT 1	12
	3.1	Location	of Sensitive Receptors within the Modelled Area1	12
	3.2	Road Tra	affic Data1	L4
	3.3	MeTeor	plogical Data	15
	3.4	Motor V	ehicle Emission Rates 1	16
	3.5	Re-suspe	ended Particulate Matter Emission Rates 1	17
	3.6	ersion Modelling Using CAL3QHCR1	18	
	3.7	Modellir	ng Results	19
		3.7.1	Nitrogen Dioxide CAAQs	20
		3.7.2	Nitrogen Dioxide	21
		3.7.3	Carbon Monoxide	22
		3.7.4	Fine Particulate Matter (PM _{2.5})	23
		3.7.5	Coarse Particulate Matter (PM ₁₀)	24
		3.7.6	Total Suspended Particulate Matter (TSP)	25
		3.7.7	Acetaldehyde	26
		3.7.8	Acrolein	27
		3.7.9	Benzene	28
		3.7.10	1,3-Butadiene	29
		3.7.11	Formaldehyde	30
4.0	GREEN	HOUSE G	AS ASSESSMENT	32
5.0	AIR QU	ALITY IM	PACTS DURING CONSTRUCTION	34
6.0	CONCL	USIONS		35
7.0	REFERE	ENCES		36

CONTENTS (CONTINUED)

TABLES

Table 1: Contaminant of Interest	3
Table 2: Applicable Contaminant Guidelines	ł
Table 3: Relevant MECP and NAPS Station Information 8	3
Table 4: Selection of Background Monitoring Stations 10)
Table 5: Traffic Volumes (AADT – Vehicles/Day) Used in the Assessment	ţ
Table 6: Traffic Volumes (AADT – Vehicles/Day) Used in the Assessment	ţ
Table 7: Hourly Vehicle Distribution Used in the Assessment 15	5
Table 8: MOVES Input Parameters	7
Table 9: MOVES Output Emission Factors for Roadway Vehicles (g/VMT); Idle Emission Rates are Grams per Vehicle Hour (g/hr) 17	7
Table 10: Re-suspended Particulate Matter Emission Factors	3
Table 11: CAL3QHCR Model Input Parameters 18	3
Table 12: Worst-Case Sensitive Receptors for 2031 Future Build Scenario)
Table 13: Summary of Predicted NO ₂ Concentrations	L
Table 14: Summary of Predicted NO ₂ Concentrations	2
Table 15: Summary of Predicted CO Concentrations 23	3
Table 16: Summary of Predicted PM2.5 Concentrations 24	ţ
Table 17: Summary of Predicted PM_{10} Concentrations	5
Table 18: Summary of Predicted TSP Concentrations 26	5
Table 19: Summary of Predicted Acetaldehyde Concentrations 27	7
Table 20: Summary of Predicted Acrolein Concentrations 28	3
Table 21: Summary of Predicted Benzene Concentrations)
Table 22: Summary of Predicted 1,3-Butadiene Concentrations)
Table 23: Summary of Predicted Formaldehyde Concentrations 31	L
Table 24: Summary of Kirby Road Traffic Volumes, Roadway Length and Emission Rates 32	2
Table 25: Changes in predicted GHG Emissions 33	3
Table 26: Predicted Future Build GHG Emissions compared to GHG targets	3
Table 27: Worst-Case Summary of Predicted Combined Contaminant Concentrations for the 2031 Future Build	5

FIGURES

Figure 1: Study Area and Modelled Hotspot	. 2
Figure 2: Motor Vehicle Emission Sources	. 3
Figure 3: Effect of Trans-Boundary Air Pollution (MECP, 2005)	. 6
Figure 4: Typical Wind Direction during an Ontario Smog Episode	. 7
Figure 5: Location of Ambient Monitoring Stations, Relevant to the Study Area	. 8
Figure 6: Worst-Case Summary of Ambient Background Concentrations	11
Figure 7: Sensitive Receptor Locations Within Modelled Hotspot Area	13
Figure 8: Wind Frequency Diagram for Pearson International Airport (2012-2016)	16

APPENDICES

APPENDIX A RESULTS FOR EACH RECEPTOR

1.0 INTRODUCTION

SLR Consulting (Canada) Ltd., was retained by HDR Inc. to conduct an air quality assessment as part of the Municipal Class Environmental Assessment for the widening of Kirby Road between Jane Street and Dufferin Street, a length of approximately 4.1 kilometres within Vaughan, Ontario. The project involves the widening of Kirby Road to two lanes, with the addition of one or two turning lanes at multiple intersections.

1.1 Study Objectives

The main objective of the study was to assess the local air quality impacts due to the proposed Kirby Road widening from Jane Street to Dufferin Street. The study also includes an overview of construction impacts and a screening level assessment of greenhouse gases (GHG). To meet these objectives, the following scenarios were considered:

- **2019 No Build (NB)** Assess the existing air quality conditions at representative receptors. Predicted contaminant concentrations from the existing traffic levels were combined with hourly measured ambient concentrations to determine combined impacts.
- **2031 Future Build (FB)** Assess the future air quality conditions with the proposed project in place. Predicted contaminant concentrations associated with traffic levels for the preferred alternative were combined with hourly measured ambient concentrations to determine combined impacts.

Given the nature of the roadway improvements and location of sensitive receptors within the study area, HDR Inc. requested a "hotspot analysis" be performed. Rather than assessing the total length of the roadway, the air quality assessment focused on one hotspot within the study area where worst-case impacts are likely to occur. The intersection at Kirby Road and Keele Street was selected to be assessed for air quality impacts. This intersection was identified to have one of the highest future 2031 intersection volumes. The segment also has high concentrations of critical receptors and sensitive receptors in the form of low-rise residential units southeast of the intersection and further along Kirby. This section of the roadway was determined to be representative of worst-case impacts for the air quality study.

The modelling considered vehicle emissions within a 1km hotspot centered at the Kirby Road and Keele Street intersection. The roadway segments considered in this assessment are shown in **Figure 1**.

Figure 1: Study Area and Modelled Hotspot

1.2 **Contaminants of Interest**

The contaminants of interest from vehicle emissions are based on the regularly assessed contaminants of interest for transportation assessments in Ontario, as determined by the Ministry of Transportation Ontario (MTO) and Ministry of Environment, Conservation and Parks (MECP). Motor vehicle emissions have largely been determined by scientists and engineers with United States and Canadian government agencies such as the U.S. Environmental Protection Agency (EPA), the MECP, Environment Canada (EC), Health Canada (HC), and the MTO. These contaminants are emitted due to fuel combustion, brake wear, tire wear, the breakdown of dust on the roadway, fuel leaks, evaporation and permeation, and refuelling leaks and spills as illustrated in **Figure 2**. Note that emissions related to refuelling leaks and spills are not applicable to motor vehicle emissions from roadway travel. Instead, these emissions contribute to the overall background levels of the applicable contaminants. All of the selected contaminants are emitted during fuel combustion, while emissions from brake wear, tire wear, and breakdown of road dust include only the particulates. A summary of these contaminants is provided in **Table 1**.

SLR

Figure 2: Motor Vehicle Emission Sources

Table 1: Contaminant of Interest

Contaminants		Volatile Organic Compounds (VOCs)			
Name	Symbol	Name	Symbol		
Nitrogen Dioxide	NO_2	Acetaldehyde	C_2H_4O		
Carbon Monoxide	CO	Acrolein	C_3H_4O		
Fine Particulate Matter (<2.5 microns in diameter)	PM _{2.5}	Benzene	C_6H_6		
Coarse Particulate Matter (<10 microns in diameter)	PM ₁₀	1,3-Butadiene	C_4H_6		
Total Suspended Particulate Matter (<44 microns in diameter)	TSP	Formaldehyde	CH₂O		

1.3 Applicable Guidelines

In order to understand the existing conditions in the modelled area, ambient background concentrations have been compared to guidelines established by government agencies and organizations. Relevant agencies and organizations in Ontario and Canada, and their applicable contaminant guidelines are:

SLR^Q

- MECP Ambient Air Quality Criteria (AAQC)
- Health Canada/Environment Canada National Ambient Air Quality Objectives (NAAQOs)
- Canadian Council of Ministers of the Environment (CCME) Canadian Ambient Air Quality Standards (CAAQS).

Within the guidelines, the threshold value for each contaminant and its applicable averaging period were used to assess the maximum predicted impact at sensitive receptors derived from computer simulations. The contaminants of interest are compared against 1-hour, 8-hour, 24-hour, and annual averaging periods. The threshold values and averaging periods used in this assessment are presented in **Table 2**. It should be noted that the CAAQS for PM_{2.5} is not based on the maximum 24-hour concentration value; PM_{2.5} is assessed based on the annual 98th percentile value, averaged over 3 consecutive years.

Contaminant	Averaging Period (hrs)	Threshold Value (µg/m3)	Source	
	1	400	AAQC	
	24	200	AAQC	
NOa	1	79	CAAOS (to be phased-in in 2025)	
1102	1	(42 ppb) ^[1]		
	Annual	23	CAAOS (to be phased-in in 2025)	
	7.111001	(12 ppb) ^[2]	o, with (to be private in in 2020)	
60	1	36,200	AAQC	
CO	8	15,700	AAQC	
	24	27 ^[3]	CAAQS	
PIVI _{2.5}	Annual	8.8 ^[4]	CAAQS	
PM ₁₀	24	50	Interim AAQC	
TSP	24	120	AAQC	
Acetaldehyde	24	500	AAQC	
Acrolain	24	0.4	AAQC	
Acrolem	1	4.5	AAQC	
Denzene	Annual	0.45	AAQC	
Benzene	24	2.3	AAQC	
1.2 Rutadiana	24	10	AAQC	
1,5-Dutauiefie	Annual	2	AAQC	
Formaldehyde	24	65	AAQC	

Table 2: Applicable Contaminant Guidelines

[1] The 1-hour NO₂ CAAQs is based on the 3-year average of the annual 98th percentile of the NO₂ daily maximum 1-hour average concentrations. [2] The annual CAAQs is based on the average over a single calendar year of all the 1-hour average NO₂ concentrations.

[3] The 24-hr PM_{2.5} CAAQS is based on the 3-year average of the annual 98th percentile of the 24-hr average concentrations.

[4] The annual PM_{2.5} CAAQS is based on the average of the three highest annual average values over the study period.

SLR

1.4 General Assessment Methodology

The worst-case contaminant concentrations due to motor vehicle emissions from the roadways were predicted at nearby receptors using dispersion modelling software on an hourly basis for a five-year period. 2012-2016 historical meteorological data from Pearson International Airport was used. Five years were modelled in order to capture the worst-case meteorological conditions. Two emission scenarios were assessed: 2019 No Build and 2031 Future Build.

Combined concentrations were determined by adding modelled and background (i.e., ambient data) concentrations together on an hourly basis. Background concentrations for all available contaminants were determined from MECP and NAPS (National Air Pollution Surveillance) stations nearest to the modelled area with applicable datasets.

Maximum 1-hour, 8-hour, 24-hour, and annual predicted combined concentrations were determined for comparison with the applicable guidelines using emission and dispersion models published by the U.S. Environmental Protection Agency (EPA). The worst-case predicted impacts are presented in this report; however, it is important to note that the worst-case impacts may occur infrequently and at only one receptor location.

SLR^O

2.0 BACKGROUND AMBIENT DATA

2.1 **Overview**

Background (ambient) conditions are measured contaminant concentrations that are independent of emissions from the proposed project infrastructure. These concentrations consist of trans-boundary (macro-scale), regional (meso-scale), and local (micro-scale) emission sources and result from both primary and secondary formation. Primary contaminants are emitted directly by the source and secondary contaminants are formed by complex chemical reactions in the atmosphere. Secondary pollution is generally formed over great distances in the presence of sunlight and heat and most noticeably results in the formation of fine particulate matter ($PM_{2.5}$) and ground-level ozone (O_3), also considered smog.

In Ontario, a significant amount of smog originates from emission sources in the United States which is the major contributor during smog events which usually occur in the summer season (MECP, 2005). During smog episodes, the U.S. contribution to $PM_{2.5}$ can be as much as 90 percent near the southwest Ontario-U.S. border. The effects of U.S. air pollution in Ontario on a high $PM_{2.5}$ day and on an average $PM_{2.5}$ spring/summer day are illustrated in **Figure 3**.

Figure 3: Effect of Trans-Boundary Air Pollution (MECP, 2005)

Air pollution is strongly influenced by weather systems (i.e., meteorology) that commonly move out of central Canada into the mid-west of the U.S. then eastward to the Atlantic coast. This weather system generally produces winds blowing from the southwest that can travel over major emission sources in the U.S. and result in the transport of pollution into Ontario. This phenomenon is demonstrated in the following figure and is based on a computer simulation from the Weather Research and Forecasting (WRF) Model.

Figure 4: Typical Wind Direction during an Ontario Smog Episode

As discussed, understanding the composition of background air pollution and its influences are important in determining potential impacts of a project, considering that the majority of the combined concentrations are typically due to existing ambient background levels. In this assessment, background conditions were characterized utilizing existing ambient monitoring data from MECP and NAPS Network stations and added to the modelled predictions in order to conservatively estimate combined concentrations.

2.2 Selection of Relevant Ambient Monitoring Stations

A review of MECP and NAPS ambient monitoring stations in Ontario was undertaken to identify the monitoring stations that are in relative proximity to the modelled area and that would be representative of background contaminant concentrations in the modelled area. Four MECP (Newmarket, Toronto North, Toronto East, and Toronto West) and five NAPS (Newmarket, Etobicoke South, Etobicoke North, Brampton, and Windsor) stations were selected for the analysis. Note, CO is only monitored at the Toronto West Station, therefore this station was used only to assess background CO concentrations. Also note that Windsor is the only station in Ontario at which background Acrolein, Formaldehyde, and Acetaldehyde are measured in recent years. Only these contaminants were considered from the Windsor station; the remaining contaminants from the Windsor station were not considered given the stations' distance from the modelled area. The locations of the relevant ambient monitoring stations in relation to the modelled area are shown in **Figure 5**. Station information is presented in **Table 3**.

SLR^O

Figure 5: Location of Ambient Monitoring Stations, Relevant to the Study Area

City/Town	Station ID	Location	Operator	Contaminant
Newmarket	48006	Eagle St. W./Mc Caffrey Rd	MECP	NO ₂ PM _{2.5}
Toronto East	33003	Kennedy Rd./Lawrence Ave. E.	MECP	NO ₂ PM _{2.5}
Toronto North	34020	Hendon Ave./Young St.	MECP	NO ₂ PM _{2.5}
Toronto West	35125	125 Resources Rd	MECP	CO NO ₂ PM _{2.5}
Newmarket	65101	Eagle St. W./Mc Caffrey Rd	NAPS	1,3-Butadiene Benzene
Brampton	60428	525 Main St	NAPS	1,3-Butadiene Benzene
Etobicoke North	60413	Elmcrest Road	NAPS	1,3-Butadiene Benzene
Etobicoke South	60435	461 Kipling Ave	NAPS	1,3-Butadiene Benzene
Windsor	60211	College St/Prince St	NAPS	Formaldehyde Acetaldehyde Acrolein

Table 3: Relevant MECP and NAPS Station Information

2.3 Detailed Analysis of Selected Worst-case Monitoring Stations

Year 2012 to 2016 hourly ambient monitoring data from the selected stations were statistically summarized for the desired averaging periods: 1-hour, 8-hour, 24-hour, and annual. Note that for the NAPS stations (VOCs), formaldehyde, acetaldehyde and acrolein are only measured at the Windsor station, and were not measured after 2010. Therefore 2006-2009 data was used for these VOCs.

SLR

Note that PM_{10} and TSP are not measured in Ontario; therefore, background concentrations were estimated by applying a $PM_{2.5}/PM_{10}$ ratio of 0.54 and a $PM_{2.5}/TSP$ ratio of 0.3 (Lall et al., 2004). Ambient VOC data is not monitored hourly but is typically measured every six days. To combine this dataset with the hourly modelled concentrations, each measured six-day value was applied to all hours between measurement dates, when there were 6 days between measurements. When there was greater than 6 days between measurements, the 90th percentile measured value for the year in question was applied for those days in order to determine combined concentrations. This method is conservative as it applies a concentration that is higher than 90% of the measured concentrations whenever data was not available.

Table 4 shows the selected monitoring station for the various contaminants considered in theassessment. Figure 5 provides a detailed statistical analysis of the selected worst-case maximumcontaminant concentrations at background monitoring stations in the region for various contaminants.

Contaminant	Worst-Case Station	Contaminant	Worst-Case Station
CAAQ NO ₂ (1-Hr)	Toronto West	TSP	Toronto East
CAAQ NO ₂ (ann)	Toronto West	1,3-Butadiene (24-hr)	Etobicoke North
NO ₂ (1-Hr)	Toronto East	1,3-Butadiene (ann)	Etobicoke North
NO2 (24-Hr)	Toronto West	Benzene (24-hr)	Brampton
CO (1-Hr)	Toronto West	Benzene (ann)	Brampton
CO (8-hr)	Toronto West	Formaldehyde	Windsor
PM _{2.5} (24-hr)	Toronto North	Acrolein	Windsor
PM _{2.5} (ann)	Toronto North	Acetaldehyde	Windsor
PM ₁₀	Toronto East		

Table 4: Selection of Background Monitoring Stations

SLR

concentrations

Figure 5: Selection of Worst-Case Maximum Contaminant Concentrations

A detailed statistical analysis of the selected worst-case background monitoring station for each of the contaminants was performed and is summarized in **Figure 6**. Presented is the average, 90th percentile, and maximum concentrations as a percentage of the guideline for each contaminant from the worst-case monitoring station determined above. Maximum ambient concentrations represent a single worst-case value. The 90th percentile concentration represents a reasonably worst-case background concentration, and the average concentration represents a typical background value. The 98th percentile concentration is shown for PM_{2.5}, as the guideline for PM_{2.5} is based on 98th percentile concentrations.

SLR^O

Based on a review of ambient monitoring data from 2012-2016, background concentrations were generally below their respective guidelines. The exceptions are particulate matter and benzene, as well as the 1-hour and annual NO₂ CAAQS. In many cases the exceedances represent maximum concentrations and the 90th percentile and/or average concentrations are below the guideline. It should be noted that PM_{10} and TSP were calculated based on their relationship to $PM_{2.5}$.

Figure 6: Worst-Case Summary of Ambient Background Concentrations

. SLR^O

3.0 LOCAL AIR QUALITY ASSESSMENT

3.1 Location of Sensitive Receptors within the Modelled Area

Land uses which are defined as sensitive receptors for evaluating potential air quality effects are:

- Health care facilities
- Senior citizens' residences or long-term care facilities
- Childcare facilities
- Educational facilities
- Places of worship
- Residential dwellings.

Nineteen sensitive receptor locations were selected to be representative of potential impacts within the modelled area. They are all residences with the closest proximity to the study intersection, and thus the most likely impacted by the lane expansion. The receptors are distributed between the residences along Kirby Road southeast of the study intersection as shown in **Figure 7**.

SLR^O

618100 618200 618300 618400 618500 618600 618700 618800 618900 619000 619100 619200 619300 619400 619500 619600 X-Direction [m]

Figure 7: Sensitive Receptor Locations Within Modelled Hotspot Area

3.2 Road Traffic Data

Traffic data was provided by HDR Inc. in the form of annual average daily traffic (AADT) for the major intersections within the study area for both the 2019 No Build and 2031 Future Build configurations. The AADT volumes used in the assessment of the modelled area are shown in **Table 5** and **Table 6**. Vehicle posted speed limits of 60km/h and 70km/h were applied for Kirby Road and Keele Street, respectively.

Lastly, a heavy-duty vehicle percentage was also provided by HDR for Kirby Road and Keele Street as shown in **Table 5** and **Table 6**. Hourly traffic volumes were not available; therefore, the US EPA standard rural weekday hourly distribution was used for these roadways. The hourly distributions applied in this assessment are shown in **Table 7**.

	Along Kirby Road (Eastbound and Westbound)									
		2019	No Build		2031 Future Build					
Location	AADT	% Trucks	% Medium Trucks Split	% Heavy Truck Splits	AADT	% Trucks ^[1]	% Medium Trucks Split	% Heavy Truck Splits		
Between Jane Street and Keele Street	6,300	8.10%	4.90%	3.20%	15,400	10%	5%	5%		
Between Keele Street and Dufferin Street	8,600	4.01%	3.67%	0.34%	18,200	10%	5%	5%		

Table 5: Traffic Volumes (AADT – Vehicles/Day) Used in the Assessment

[1] – As per York Region's direction, future truck percentage on Kirby Rd between Jane St and Bathurst St is assumed to be 10% with a 50%/50% division between medium and heavy trucks.

Table 6: Traffic Volumes (AADT – Vehicles/Day) Used in the Assessment

Keele Street (Northbound and Southbound)									
Location	2019 No Build AADT	2031 Future Build AADT	% Trucks ^[1]	% Medium Trucks Split	% Heavy Truck Splits				
Keele Street	18,300	19,754	6.70%	4.40%	2.30%				

[1] – Future Build truck % assumed to be same as No Build scenario.

Hour	US EPA Weekday	US EPA Weekend
1	1.0%	1.8%
2	0.7%	1.1%
3	0.6%	0.9%
4	0.7%	0.8%
5	0.9%	0.8%
6	2.0%	1.0%
7	4.1%	1.9%
8	5.8%	2.7%
9	5.4%	3.9%
10	5.3%	5.2%
11	5.5%	6.3%
12	5.8%	7.0%
13	5.9%	7.2%
14	6.0%	7.2%
15	6.6%	7.3%
16	7.2%	7.4%
17	7.8%	7.3%
18	7.6%	7.0%
19	5.9%	6.1%
20	4.3%	5.1%
21	3.6%	4.1%
22	3.1%	3.3%
23	2.4%	2.6%
24	1.8%	2.0%

Table 7: Hourly Vehicle Distribution Used in the Assessment

3.3 MeTeorological Data

2012-2016 hourly meteorological data was obtained from the Pearson International Airport in Toronto and upper air data was obtained from Buffalo, New York as recommended by the MECP for the modelled area. The combined data was processed to reflect conditions at the modelled area using the U.S. EPA's PCRAMMET software program which prepares meteorological data for use with the CAL3QHCR vehicle emission dispersion model. A wind frequency diagram (wind rose) representing winds blowing from a certain direction is shown in **Figure 8**.

Figure 8: Wind Frequency Diagram for Pearson International Airport (2012-2016)

3.4 Motor Vehicle Emission Rates

The U.S. EPA's Motor Vehicle Emission Simulator (MOVES) model provides estimates of current and future emission rates from motor vehicles based on a variety of factors such as local meteorology, vehicle fleet composition and speed. MOVES 2014b, released in December 2018, is the U.S. EPA's tool for estimating vehicle emissions due to the combustion of fuel, brake and tire wear, fuel evaporation, permeation, and refuelling leaks. The model is based on "an analysis of millions of emission test results and considerable advances in the Agency's understanding of vehicle emissions and accounts for changes in emissions due to proposed standards and regulations". For this project, MOVES was used to estimate vehicle emissions based on vehicle type, road type, model year, and vehicle speed. Emission rates were estimated based on the heavy-duty vehicle percentages provided by HDR. Vehicle age was based on the U.S. EPA's default distribution. **Table 8** specifies the major inputs into MOVES.

From the MOVES outputs, the highest monthly value for each contaminant was selected to represent a worst-case emission rate. The emission rates for each vehicle speed and contaminant modelled are shown in **Table 9** for the No Build and Future Build years, for a heavy and medium duty vehicle percentage of 3.2% and 4.9%, respectively. As shown in **Table 9**, emissions in the future year are generally predicted to decrease.

Table 8: MOVES Input Parameters

Parameter	Input				
Scale	Custom County Domain				
Meteorology	Temperature and Relative Humidity were obtained from meteorological data from the Environment Canada Toronto INTL A station for the years 2012 to 2016.				
Years	2019 (No Build) and 2031 (Future Build)				
Geographical Bounds	Custom County Domain				
Fuels	Compressed Natural Gas / Diesel Fuels / Gasoline Fuels				
Source Use Types	Combination Long-haul Truck / Combination Short-haul Truck / Intercity Bus / Light Commercial Truck / Motor Home / Motorcycle / Passenger Car / Passenger Truck / Refuse Truck / School Bus / Single Unit Long-haul Truck / Single Unit Short-haul Truck / Transit Bus				
Road Type	Rural Local				
Contaminants and Processes	$NO_2 / CO / PM_{2.5} / PM_{10} / Acetaldehyde / Acrolein / Benzene / 1,3-Butadiene / Formaldehyde/Equivalent CO_2. TSP can't be directly modelled by MOVES. However, the U.S. EPA has determined, based on emissions test results, that >97% of tailpipe particulate matter is PM_{10} or less. Therefore, the PM_{10} exhaust emission rate was used for TSP.$				
Vehicle Age Distribution	MOVES defaults based on years selected for the roadway.				

Table 9: MOVES Output Emission Factors for Roadway Vehicles (g/VMT); Idle Emission Rates are Grams per Vehicle Hour (g/hr)

Year	Speed (Km/hr)	СО	NO _X	Benzene	1,3- Butadiene	Formald- ehyde	Acetalde- hyde	Acrolein	PM _{2.5}	PM ₁₀	TSP ¹
2019	60	2.64	0.30	0.0020	0.000119	0.0017	0.0008	0.00010	0.016	0.060	0.060
2019	70	2.35	0.27	0.0018	0.000100	0.0013	0.0006	0.00008	0.012	0.037	0.037
2019	Idle	10.06	2.98	0.0367	0.003774	0.0371	0.0188	0.00244	0.175	0.193	0.193
2031	60	1.23	0.11	0.0010	0.000003	0.0009	0.0003	0.00004	0.011	0.054	0.054
2031	70	1.13	0.10	0.0009	0.000002	0.0006	0.0002	0.00003	0.007	0.032	0.032
2031	Idle	2.61	0.64	0.0117	0.000077	0.0121	0.0044	0.00062	0.052	0.057	0.057

[1] –TSP can't be directly modelled by MOVES. However, the U.S. EPA has determined, based on emissions test results, that >97% of tailpipe particulate matter is PM₁₀ or less. Therefore, the PM₁₀ exhaust emission rate was used for TSP.

3.5 **Re-suspended Particulate Matter Emission Rates**

A large portion of highway particulate matter emissions comes from dust on the pavement which is resuspended by vehicles travelling on the highway. These emissions are estimated using empirically derived values presented by the U.S. EPA in their AP-42 report. The emissions factors for re-suspended PM were estimated by using the following equation from U.S. EPA's Document AP-42 report, Chapter 13.2.1.3 and are summarized in **Table 10**.

$$E = k(sL)^{0.91} * (W)^{1.02}$$

Where: E = the particulate emission factor

k = the particulate size multiplier

sL = silt loading

W = average vehicle weight (Assumed 3 Tons based on fleet data and U.S. EPA vehicle weight and distribution)

Roadway	К	sL	W	E (g/VMT)		
AADT	(PM _{2.5} /PM ₁₀ /TSP)	(g/m²)	(Tons)	PM _{2.5}	PM ₁₀	TSP
<500	0.25/1.0/5.24	0.6	3	0.503	2.015	10.561
500-5,000	0.25/1.0/5.24	0.2	3	0.185	0.741	3.886
5,000-10,000	0.25/1.0/5.24	0.06	3	0.061	0.247	1.299
>10,000	0.25/1.0/5.24	0.03	3	0.03299	0.13195	0.368

Table 10: Re-suspended Particulate Matter Emission Factors

3.6 Air Dispersion Modelling Using CAL3QHCR

The U.S. EPA's CAL3QHCR dispersion model, based on the Gaussian plume equation, was specifically designed to predict air quality impacts from roadways using site specific meteorological data, vehicle emissions, traffic data, and signal data. The model input requirements include roadway geometry, sensitive receptor locations, meteorology, traffic volumes, and motor vehicle emission rates as well as some contaminant physical properties such as settling and deposition velocities. CAL3QHCR uses this information to calculate hourly concentrations which are then used to determine 1-hour, 8-hour, 24-hour and annual averages for the contaminants of interest at the identified sensitive receptor locations. **Table 11** provides the major inputs used in CAL3QHCR. The emission rates used in the model were the outputs from the MOVES and AP-42 models, weighted for the vehicle fleet distributions provided. The outputs of CAL3QHCR are presented in the results section.

Parameter	Input
Free-Flow and Queue Link Traffic Data	Hourly traffic distributions were applied to the AADT traffic volumes in order to input traffic volumes in vehicles/hour. Emission rates from the MOVES output were input in grams/VMT or grams per vehicle hour. Signal timings for the traffic signal were input in seconds.
Meteorological Data	2012-2016 data from Pearson International Airport
Deposition Velocity	PM _{2.5} : 0.1 cm/s PM ₁₀ : 0.5 cm/s TSP: 0.15 cm/s NO ₂ , CO and VOCs: 0 cm/s
Settling Velocity	PM _{2.5} : 0.02 cm/s PM ₁₀ : 0.3 cm/s TSP: 1.8 cm/s CO, NO ₂ , and VOCs: 0 cm/s

Table 11: CAL3QHCR Model Input Parameters

Parameter	Input
Surface Roughness	The land type surrounding the project site is categorized as suburban. Therefore, a surface roughness height of 52cm was applied in the model.
Vehicle Emission Rate	Emission rates calculated in MOVES and AP-42 were input in g/VMT

3.7 Modelling Results

Presented below are the modelling results for the 2019 No Build and 2031 Future Build scenarios based on 5-years of meteorological data. For each contaminant, combined concentrations are presented along with the relevant contribution due to the background and roadway. Results in this section are presented for the worst-case sensitive receptors for each contaminant and averaging period (see **Table 12**), which were identified as the maximum combined concentration for the 2031 Future Build scenario. Results for all modelled receptors are provided in **Appendix A**. It should be noted that the maximum combined concentration at any sensitive receptor often occurs infrequently and may only occur for one hour or day over the 5-year period.

Contaminant	Averaging Period	Sensitive Receptor	
	1-hour	18	
	Annual	18	
NO	1-hour	19	
NU ₂	24-hour	7	
<u></u>	1-hour	11	
CO	8-hour	11	
	24-hour	18	
PIVI _{2.5}	Annual	18	
PM ₁₀	24-hour	18	
TSP	24-hour	18	
1.2 Dutediana	24-hour	19	
1,3-Butadiene	Annual	18	
Formaldehyde	24-hour	18	
Damaana	24-hour	18	
Benzene	Annual	18	
Acrolain	1-hour	18	
Acrolein	24-hour	18	
Acetaldehyde	24-hour	18	

Table 12: Worst-Case Sensitive Receptors for 2031 Future Build Scenario

Coincidental hourly modelled roadway and background concentrations were added to derive the combined concentration for each hour over the 5-year period. Hourly combined concentrations were then used to determine contaminant concentrations based on the applicable averaging period. Statistical analysis in the form of maximum, 90th percentile, and average combined concentrations were calculated for the worst-case sensitive receptor for each contaminant and are presented below. The maximum combined concentration (or 3-year average annual 98th percentile concentration in the case of PM_{2.5}) was used to assess compliance with MECP guidelines or CAAQS. If concentrations in excess of the guideline were predicted, a frequency analysis was undertaken in order to estimate the number of occurrences above the guideline. Provided below are the modelling results for the contaminants of interest.

3.7.1 Nitrogen Dioxide CAAQs

Table 13 presents the predicted combined concentrations for the worst-case sensitive receptor for 1-hour and annual NO_2 based on 5 years of meteorological data. The results conclude that:

- The annual 98th percentile of daily maximum 1-hour NO₂ concentrations, averaged over three consecutive years exceeds the CAAQs with a 6% contribution from the roadway.
- The annual average concentration exceeds the CAAQs guideline with a 2% contribution from the roadway.

146%

115%

79%

6%

1%

1%

Table 13: Summary of Predicted NO₂ Concentrations

average concentrations.					
% of CAAQs Guideline:					
Maximum	143%				
Average	137%				
Roadway Contribution:					
Maximum	2%				
Average	2%				

Maximum combined concentrations exceeds the annual CAAQ Guideline of 24 μ g/m³ at 34 μ g/m³. Note that the background concentrations alone exceed the CAAQ's guideline.

3.7.2 **Nitrogen Dioxide**

Table 14 presents the predicted combined concentrations for the worst-case sensitive receptor for 1hour and 24-hour NO₂ based on 5 years of meteorological data. The results conclude that:

Both the maximum 1-hour and 24-hour NO₂ combined concentrations were below their respective MECP guidelines.

45%

13%

7%

2%

1%

2%

Table 14: Summary of Predicted NO₂ Concentrations

Conclusions:

- All combined concentrations were below their respective MECP guidelines.
- The contribution from the roadway to the combined concentrations was 2% or less.

3.7.3 Carbon Monoxide

Table 15 presents the predicted combined concentrations for the worst-case sensitive receptor for 1-hour and 8-hour CO based on 5 years of meteorological data. The results conclude that:

• Both the maximum 1-hour and 8-hour CO combined concentrations were well below their respective MECP guidelines.

Table 15: Summary of Predicted CO Concentrations

Conclusions:

- All combined concentrations were below their respective MECP guidelines. ٠
- The contribution from the roadway to the combined concentrations was 2%.

Fine Particulate Matter (PM_{2.5}) 3.7.4

Table 16 presents the predicted combined concentrations for the worst-case sensitive receptor for 24hour and annual PM_{2.5} based on 5 years of meteorological data. The results conclude that:

- The average annual 98th percentile of 24-hour PM_{2.5} combined concentrations, averaged over • three consecutive years was below the CAAQs.
- The three-year annual average concentration exceeded the guideline with a 3% contribution from • the roadway.

Table 16: Summary of Predicted PM_{2.5} Concentrations

3.7.5 Coarse Particulate Matter (PM₁₀)

Table 17 presents the predicted combined concentration for the worst-case sensitive receptor for 24-hour PM_{10} based on 5 years of meteorological data. The results conclude that:

• The maximum 24-hr PM₁₀ combined concentration exceeded the MECP guideline.

Table 17: Summary of Predicted PM₁₀ Concentrations

Conclusions:

- The maximum combined concentration of PM_{10} was found to exceed the guideline of 50 µg/m³. It should be noted, . however, that background concentrations alone exceeded the guideline and that the roadway contribution is 1% of the maximum value.
- Frequency analysis was conducted to determine the frequency of exceedances over the 5-year period.
- A total of 14 days exceeded the guideline in the five-year period for No Build and 14 days for the Future Build scenario, which equate to less than 1% of the time.

3.7.6 Total Suspended Particulate Matter (TSP)

Table 18 presents the predicted combined concentration for the worst-case sensitive receptor for 24hour TSP based on 5 years of meteorological data. The results conclude that:

The maximum 24-hr TSP combined concentration exceeded the MECP guideline.

Table 18: Summary of Predicted TSP Concentrations

Conclusions:

- The TSP results show that the combined concentrations exceed the guideline. It should be noted, however, that background concentrations alone account for 109% of the guideline and that the roadway contribution is 2% of the maximum value.
- Frequency analysis was conducted to determine the frequency of exceedances over the 5-year period. A total of 1 day exceeded the guideline in the five-year period in both the No Build and Future Build scenarios, which equates to less than 1% of the time.

Ambient VOC concentrations are typically measured every 6 days in Ontario. In order to combine the ambient data to the modelled results, the measured concentrations were applied to the following 6 days when measurements were 6 days apart. When measurements were further than 6 days apart, the 90th percentile annual value was used to represent the missing data. This background data was added to the predicted hourly roadway concentrations at each receptor to obtain results for the VOCs.

3.7.7 Acetaldehyde

Table 19 presents the predicted combined concentration for the worst-case sensitive receptor for 24hour acetaldehyde based on 5 years of meteorological data. The results conclude that:

The maximum 24-hour acetaldehyde combined concentration was well below the respective MECP guideline.

Table 19: Summary of Predicted Acetaldehyde Concentrations

Conclusions:

• All combined concentrations were below the respective MECP guideline.

• The contribution from the roadway to the combined concentrations was <1%.

3.7.8 Acrolein

 Table 20 presents the predicted combined concentrations for the worst-case sensitive receptor for 1

 hour and 24-hour acrolein based on 5 years of meteorological data. The results conclude that:

• The maximum 1-hour and 24-hour acrolein combined concentrations were below the respective MECP guidelines.

Table 20: Summary of Predicted Acrolein Concentrations

Conclusions:

The combined concentrations were below the respective MECP 1-hr guideline. The contribution from the roadway was less than 1%.

% of MECP Guideline:

Maximum	33%				
90 th Percentile	19%				
Average	16%				
Roadway Contribution					
Maximum	<1%				
90 th Percentile	<1%				
	-10/				
Average	<1%				

Conclusions:

The combined concentrations were below the respective MECP 24-hr guideline. The contribution from the roadway was 1% or less.

3.7.9 Benzene

Table 21 presents the predicted combined concentrations for the worst-case sensitive receptor for 24hour and annual benzene based on 5 years of meteorological data. The results conclude that:

- The maximum 24-hour benzene combined concentration was below the respective MECP guideline. The roadway contribution to the maximum concentration was 1%.
- The annual benzene concentration exceeded the guidline. The roadway contribution to the • maximum annual average was 1%.

Table 21: Summary of Predicted Benzene Concentrations

Conclusions:

2031 FB

The combined concentration exceeded the MECP annual guideline. It should be noted that ambient concentrations were 208% of the guideline and the roadway contribution to the maximum was 1%.

3.7.10 1,3-Butadiene

Background

2019 NB

5 Year Summary

2031 FB

0.8

0.6

0.4

0.2

0.0

Table 22 presents the predicted combined concentrations for the worst-case sensitive receptor for 24hour and annual 1,3-butadiene based on 5 years of meteorological data. The results conclude that:

2031 FB

2019 NB

Maximum Annual

The maximum 24-hour and annual 1,3-butadiene combined concentrations were well below the • respective MECP guidelines.

2019 NB

Average Annual

from the roadway was less

than 1%.

Table 22: Summary of Predicted 1,3-Butadiene Concentrations

3.7.11 Formaldehyde

Background

2019 NB

5 Year Summary

2031 FB

2019 NB

Maximum Annual

0.00

Table 23 presents the predicted combined concentration for the worst-case sensitive receptor for 24-hour formaldehyde based on 5 years of meteorological data. The results conclude that:

2031 FB

2019 NB

Average Annual 2031 FB

• The maximum 24-hour formaldehyde combined concentration was below the respective MECP guideline.

Table 23: Summary of Predicted Formaldehyde Concentrations

Conclusions:

- All combined concentrations were below the respective MECP guideline.
- The contribution from the roadway to the combined concentration was <1%.

4.0 GREENHOUSE GAS ASSESSMENT

In addition to the contaminants of interest assessed in the local air quality assessment, greenhouse gas (GHG) emissions were predicted from the project. Potential impacts were assessed by calculating the relative change in total emissions between the 2019 No Build and 2031 Future Build scenarios as well comparing the total emission to the 2030 provincial and Canada-wide GHG targets. Total GHG emissions from the roadway were determined based on the total 4.1km length of the study roadway, traffic volumes, and predicted emission rates.

From a GHG perspective, the contaminants of concern from motor vehicle emissions are carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O). These GHGs can be further classified according to their Global Warming Potential. The Global Warming Potential is a multiplier developed for each GHG, which allows comparison of the ability of each GHG to trap heat in the atmosphere, relative to carbon dioxide. Using these multipliers, total GHG emissions can be classified as CO₂ equivalent emissions. For this assessment, the MOVES model was used to determine total CO₂ equivalent emission rates for the posted speed and heavy/medium-duty vehicle percentage on Kirby Road. **Table 24** summarizes the length of the roadway, traffic volumes, and emission rates used to determine total GHG emissions on Kirby Road in the 2019 No Build and 2031 Future Build scenario.

Two-Way AADT		Length of	Heavy/Medium Duty Vehicle Percentage (%)		Posted	Total CO ₂ Equivalent (tonnes)		
	2019	2031	(Miles)	2019	2031	(km/hr)	2019	2031
Kirby from Jane to Keele	6,300	15,400	1.26	3.20/4.90	5.0/5.0	60	1195	2,348
Kirby from Keele to Dufferin	8,600	18,200	1.30	0.34/3.67	5.0/5.0	60	1499	2,852
Jane Street	11,900	11,698	0.37	1.60/2.90		80	583	438
Keele Street	18,300	19,754	0.37	2.30/4.40		70	931	739
Dufferin Street	13,100	11,168	0.37	0.90/2.00		70	622	378

Table 24: Summary of Kirby Road Traffic Volumes, Roadway Length and Emission Rates

The total predicted annual GHG emissions for the 2019 No Build and 2031 Future Build scenarios are shown in **Table 25**. Also shown is the percent change in total GHG emissions between the scenarios. The results show that due to the increases in traffic volumes on future Kirby road, the total GHG emissions will increase by 40%.

Table 26 shows the GHG emissions on Kirby Road project represent 0.0066% of the provincial target and 0.0013% of the Canada-wide target. The contribution of GHG emissions from the project is small in comparison to these provincial and national targets.

Table 25: Changes in predicted GHG Emissions

Roadway	2019 Total CO ₂ Equivalent (tonnes)	2031 Total CO ₂ Equivalent (tonnes)	Changes in Emission (%)
All Roads	4,829	6,755	+40%

Table 26: Predicted Future Build GHG Emissions compared to GHG targets

	Total CO ₂ Equivalent (tonnes/year)
All Roads	6,755
Comparison to Canada-wide Target	0.0013%
Comparison to Ontario-wide Target	0.0066%
Comparison to Transportation Target	0.0041%
Canada-Wide 2030 GHG Target ¹	517,000,000
Ontario-Wide 2030 GHG Target ²	102,350,000
Transportation Sector GHG 2030 Target ³	164,000,000

¹ Environment and Climate Change Canada (2018) Canadian Environmental Sustainability Indicators: Progress towards Canada's greenhouse gas emissions reduction target. Available at: www.canada.ca/en/environment-climate-change/services/environmentalindicators/progress-towards-canada-greenhouse-gas-emissions-reduction-target.html.

² Ontario Climate Change Strategy. Available at: https://www.ontario.ca/page/climate-change-strategy

³ CANADA'S SECOND BIENNIAL REPORT ON CLIMATE CHANGE. Available at https://www.canada.ca/en/environment-climatechange/services/climate-change/greenhouse-gas-emissions/second-biennial-report.html

5.0 AIR QUALITY IMPACTS DURING CONSTRUCTION

During construction of the roadway, dust is the primary contaminant of concern. Other contaminants including NO_x and VOC's may be emitted from equipment used during construction activities. Due to the temporary nature of construction activities, there are no air quality criteria specific to construction activities. However, the Environment Canada "Best Practices for the Reduction of Air Emissions from Construction and Demolition Activities" document provides several mitigation measures for reducing emissions during construction activities. Mitigation techniques discussed in the document include material wetting or use of chemical suppressants to reduce dust, use of wind barriers, and limiting exposed areas which may be a source of dust and equipment washing. In addition, planting of additional vegetation (for example coniferous species) and use of non-chloride dust suppressants for dust control are recommended by the MECP. It is recommended that these best management practices be followed during construction of the roadway to reduce any air quality impacts that may occur.

6.0 CONCLUSIONS

Presented in **Table 27** is a summary of the worst-case modelling results for the 2031 Future Build based on 5-years of meteorological data. For each contaminant, combined concentrations are presented as a percentage of the applicable guideline.

The maximum combined concentrations for the Future Build were all below their respective MECP guidelines or CAAQS, with the exception of the 1-hr and annual NO₂ CAAQ, annual PM_{2.5}, 24-hr PM₁₀, 24-hr TSP and annual benzene. Note that background concentrations alone exceeded the guideline for all of these contaminant averaging periods as well. The contribution from the roadway emissions to the combined concentrations was small.

As shown in **Table 12**, Receptor 18 will be the worst-case sensitive receptor for most of the contaminants of interest, including NO_2 CAAQ standards, $PM_{2.5}$, PM_{10} , and TSP, in the 2031 future build scenario. Therefore, additional dust mitigation measures are recommended to be conducted in the vicinity of this receptor.

Greenhouse gas assessment and air quality impacts during construction are discussed in **Section 4** and **Section 5**.

Table 27: Worst-Case Summary of Predicted Combined Contaminant Concentrations for the 2031 Future Build

7.0 REFERENCES

- Air & Waste Management Association, 2011. The Role of Vegetation in Mitigating Air Quality Impacts from Traffic Emissions. [online] http://www.epa.gov/nrmrl/appcd/nearroadway/pdfs/baldauf.pdf
- CCME, 2000. Canadian Council of Ministers of the Environment. Canada-Wide Standards of Particulate Matter and Ozone. Endorsed by CCME Council of Ministers, Quebec City. [Online]http://www.ccme.ca/assets/pdf/pmozone_standard_e.pdf
- Environment Canada. 2000. Priority Substances List Assessment Report: Respirable Particulate Matter Less Than or Equal to 10 Microns. Canadian Environmental Protection Act, 1999. Environment Canada, Health Canada. [Online] http://www.ec.gc.ca/Substances/ese/eng/psap/final/PM-10.cfm.
- Health Canada. 1999. National Ambient Air Quality Objectives for Particulate Matter Part 1: Science Assessment Document. Health Canada. A report by the CEPA/FPAC Working Group on Air Quality Objectives and Guidelines.
- Lall, R., Kendall, M., Ito, K., Thurston, G., 2004. Estimation of historical annual PM2.5 exposures for health effects assessment. Atmospheric Environment 38(2004) 5217-5226.
- Ontario Publication 6570e, 2008. Ontario's Ambient Air Quality Criteria. Standards Development Branch, Ontario Ministry of the Environment.
- Ontario Ministry of the Environment, 2005. Transboundary Air Pollution in Ontario. Queens Printer for Ontario.
- Randerson, D., 1984. Atmospheric Science and Power Production . United States Department of Energy.
- Seinfeld, J.H. and Pandis, S.P.,2006. Atmospheric Chemistry and Physics From Air Pollution to Climate Change. New Jersey: John Wiley & Sons.
- United States Environmental Protection Agency, 2008. AERSURFACE User's Guide. USEPA.
- United States Environmental Protection Agency, 1997. Document AP 42, Volume I, Fifth Edition, Chapter 13.2.1. USEPA.
- United States Environmental Protection Agency, 2010. Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling Compression-Ignition. USEPA.
- United States Environmental Protection Agency, 2009. MOVES 2010 Highway Vehicles: Population and Activity Data. USEPA.
- WHO. 2005. WHO air quality guidelines global update 2005. Report on a Working Group meeting, Boon, Germany, October 18-20, 2005..

Air Quality Assessment Kirby Road Widening

City of Vaughan SLR Project No.: 241.20105.00000

__SLR^O

Summary of Maximum 1,3-Butadiene Annual Concentrations by Receptor 2031 FB Case

Summary of Maximum Acrolein 24hr Concentrations by Receptor 2031 FB Case

Summary of Maximum CAAQ NO_2 1hr Concentrations by Receptor 2031 FB Case

Summary of Maximum CAAQ NO_2 Annual Concentrations by Receptor 2031 FB Case

global environmental and advisory solutions

Summary of Maximum Formaldehyde 24hr Concentrations by Receptor 2031 FB Case

Summary of Maximum NO₂ 1hr Concentrations by Receptor 2031 FB Case

Neceptor 15

Summary of Maximum NO_2 24hr Concentrations by Receptor 2019 NB Case

Summary of Maximum PM_{2.5} 24hr Concentrations by Receptor 2019 NB Case

Summary of Maximum PM_{2.5} 24hr Concentrations by Receptor 2031 FB Case

Summary of Maximum PM_{10} 24hr Concentrations by Receptor 2031 FB Case

_SLR^Q