

PRELIMINARY HYDROGEOLOGICAL INVESTIGATION REPORT MUNICIPAL CLASS EA STUDY FOR KIRBY ROAD WIDENING FROM JANE STREET TO DUFFERIN STREET CITY OF VAUGHAN, ONTARIO

Report

to

HDR Inc.

Date: June 06, 2022 File: 26130

TABLE OF CONTENTS

1	I INTRODUCTION						
2	BACK	BACKGROUND REVIEW					
	2.1	Site and Project Description	1				
	2.2	Topography and Drainage	2				
	2.3	Physiography	2				
	2.4	Regional Geology and Hydrogeology	2				
	2.5	Groundwater Users	3				
	2.6	Environmental Features	4				
3	INVE	STIGATION PROCEDURES	5				
	3.1	3.1 Geotechnical Drilling and Testing					
	3.2	Hydrogeological Investigation					
	3.3	Single Well Response Tests					
	3.4	Groundwater Sampling and Chemical Analysis	7				
4	TEST	TESTING RESULTS AND ANALYSIS8					
	4.1	Groundwater Levels	8				
	4.2	Hydraulic Conductivities	9				
	4.3	Groundwater Quality	10				
5	DEW	ATERING ASESSMENT	12				
	5.1	Construction Dewatering	12				
		5.1.1 West Don River Culvert	12				
		5.1.2 GO Transit Barrie Line Grade Separation	12				
		5.1.3 Municipal Service Installation	13				
	5.2	Dewatering Estimates	14				
	5.3	Permanent Drainage	15				
6	IMPA	CT ASSESSMENT	15				
	6.1	Geotechnical Impacts	15				
	6.2	Impact to Surface Water and Natural Environment					
	6.3	Impacts to Water Well Users	17				

	6.4	Other Potential Impacts	17
7	CONC	LUSIONS AND RECOMMENDATIONS	.17
	7.1	Water Taking Permit	17
	7.2	Discharge of Groundwater	18
	7.3	Control of Impacts and Monitoring Program	18
8	CLOS	URE	.20
9	REFE	RENCES	.21

STATEMENT OF LIMITATIONS AND CONDITIONS

TABLES

Table 3-1 – Monitoring Well Details	. 5
Table 4-1 – Measured Groundwater Levels at Monitoring Wells	. 8
Table 4-2 – Calculated Vertical Hydraulic Gradient	. 9
Table 4-3 – Estimated Hydraulic Conductivities	10
Table 4-4 – Table of Measured City of Vaughan Sewer Use by Law Exceedances	11
Table 4-5 – Table of Measured PWQO Exceedances	11
Table 5-1 – Table of Estimated Construction Dewatering Volumes	15

FIGURES

Figure 1 – Site Location
Figure 2 – Topography
Figure 3 – Physiographic Regions
Figure 4 – Surficial Geology
Figure 5 – Bedrock Geology
Figure 6 – Regional Cross-Section
Figure 7 – MECP Well Records
Figure 8 – Nearby Environmental Features
Figure 9 – Borehole and Monitoring Well Locations
Figure 10 Zone of Influence

Figure 10 – Zone of Influence

APPENDICES

Appendix A – MECP Well Records

Appendix B – Record of Borehole Sheets

Appendix C – Single Well Response Test Analyses

Appendix D – Laboratory Certificates of Analysis

Appendix E – Dewatering Estimates

1 INTRODUCTION

Thurber Engineering Ltd. (Thurber) was retained by HDR Inc. (HDR) to prepare a Hydrogeological Investigation in support of the Municipal Class Environmental Assessment (EA) study for the proposed widening of Kirby Road between Jane Street and Dufferin Street in the City of Vaughan, Ontario. It is our understanding that the City of Vaughan (the City) plans to reconstruct the roadway from two to four lanes between Jane Street and Dufferin Street (the Site), construct a grade separation of the Barrie Go Rail line crossing west of Keele Street and eliminate the jog at Jane Street. It is understood that the rail grade separation will comprise either an underpass or overpass structure to convey Kirby Road under or over the railway.

The purpose of the investigation was to establish baseline hydrogeological conditions within the Site in support of the class EA and preliminary design through subsurface investigation, including characterization of the soil and groundwater conditions. Preliminary discussion of potential construction dewatering needs is included, as well as an impact assessment and potential mitigation measures.

A geotechnical investigation was completed concurrently with the hydrogeological investigation. The results of the geotechnical investigation are reported under separate cover and should be read in conjunction with this report.

It is a condition of this report that Thurber's performance of its professional services is subject to the attached Statement of Limitations and Conditions.

2 BACKGROUND REVIEW

2.1 Site and Project Description

The Site is an approximate 4.1 km section of the Kirby Road right-of-way (ROW) that extends between Jane Street and Dufferin Street where earthwork activities and materials management are anticipated to accommodate the proposed design. The Barrie Go Rail line crosses the Site alignment to the west of Keele Street in a north to south direction. The study area for the hydrogeological investigation was defined as 500 m from the alignment. The location and approximate boundary of the Site and Study Area are shown on Figure 1.

According to the *City of Vaughan Official Plan* (Schedule 13), the land use adjacent to the Site is low-rise residential and new community areas located to the southern side of the Site and agricultural areas and parks to the northern side of the Site. The Site (from Jane Street to Keele Street) is also a part of the Block 27 New Community Area.

2.2 Topography and Drainage

The Site is mainly located within the Don River Watershed and falls under the jurisdiction of the Toronto and Region Conservation Authority (TRCA). A small portion of the Site is also situated within the Humber River Watershed, which is also within the jurisdiction of the TRCA. The regional topography slopes southerly toward Humber River and Don River West Branch, and eventually drains into Lake Ontario. Ground surface at the Site undulates gently and elevations range from about 310 m to approximately 270 m (Figure 2). Overland flow at the Site is interpreted to follow the existing topography, with the Site draining westerly to Don River West Branch and easterly toward Don River East Branch.

2.3 Physiography

A review of the Physiographic Regions of Southern Ontario indicated that the Site is primarily located within the Physiographic Region of the South Slope, except for the east portion which extends into the Oak Ridges Moraine (ORM). The South Slope is typically a drumlinized area consisting of areas of thin (<1 m) aeolian sand deposits underlain by glacial deposits, primarily till. The ORM is comprised primarily of sandy soils and hummocky terrain. The ORM provides an important groundwater recharge area and hosts the headwaters of several rivers and streams (Chapman and Putnam, 1984). A physiographic region map of the Site and surrounding area is shown on Figure 3.

2.4 Regional Geology and Hydrogeology

Geological and hydrogeological conditions were based on publicly-available information obtained from the Ontario Geological Survey (OGS) and TRCA.

The surficial geology across the majority of the Site primarily consists of clay to silt-textured till (Till) that was derived from glaciolacustrine deposits or shale. The ORM region is dominated by ice-contact stratified deposits that mainly consist of sand and gravel with minor silt, clay and till. Figure 4 illustrates the mapped surficial geology of the Site.

The bedrock underlying the Site consists of the Blue Mountain and Georgian Bay Formation. The Blue Mountain Formation consists of shale with minor interbeds of limestone and the Georgian Bay Formation consists of shale and limestone. The bedrock surface in the area is expected to be at approximate elevation of 110 m, which is approximately 160 to 200 m below ground surface. A bedrock geology map is presented on Figure 5.

A regional west to east geological cross section along Don River watershed is provided on Figure 6. Based on a review of the regional cross section, the following units overlie the bedrock from shallowest to deepest:

- Recent Sediments;
- Halton Till (Aquitard);
- Oak Ridges Aquifer Complex (Aquifer);
- Newmarket Till (Aquitard);
- Thorncliffe Formation (Aquifer);
- Sunnybrook Drift (Aquitard); and
- Scarborough Formation (Aquifer).

The Halton Till is the uppermost overburden unit across the Site and it consists of silt to silty clay with occasional gravel. The uppermost aguifer underlying the Site is the Oak Ridges Aguifer Complex (ORAC), which is interpreted to occur where continuous layers of fine to medium sand were encountered. It is known to be unconfined near the crest of the moraine and is a regional significant recharge area. However, it is confined by the till units both to the north and south of the highland. This layer can reach a thickness of up to 150 m under the crest of the moraine but thins out rapidly towards its margins. In areas around the Site, the ORAC thickness is expected to be between 20 m and 80 m. The lower contact of the ORAC sits on the Newmarket Till that acts as a regional aguitard separating the ORAC from underlying Thorncliffe formation. The Newmarket Till is expected to be thin and/or absent in the vicinity of the Site. The Thorncliffe formation is comprised of sand, silty sand, and pebbly silt and clay deposits and it is expected to have a thickness of up to 20 m around the Site. The Sunnybrook Drift is considered as an aguitard separating the Thorncliffe Formation form the Scarborough Formation and it is interpreted to be a clast-poor, silt to silty clay unit. The water-bearing formation consists of clay, silt, and sand deposited by large, braided melt-water rivers draining from an ice sheet. The Scarborough Formation is largely found in the bedrock valleys (TRCA, 2009).

2.5 Groundwater Users

A search o the Ministry of Environment, Conservation and Parks (MECP) well records database conducted for a 500 m radius around the Site returned a total of 53 records (Figure 7), of which 25 were reported as water supply wells. It is anticipated that some of these wells are still in use and likely service the rural properties in the western portion of the Site whereas the areas around the eastern portion of the Site are likely developed and serviced with municipal water. A general

review of the water well information provided on MECP's Water Well Records database indicated that water levels were generally between depths of approximately 10 m and 40 m, with well depths ranging from approximately 20 m to 55 m. A detailed table summarizing the data provided from MECP's database is provided in Appendix A.

A search conducted in July 2020 identified no active Permits To Take Water within 500 m of the Site. Only one Environmental Activity and Sector Registry (EASR) registration (11650 Keele Street) was found within the study area.

2.6 Environmental Features

Based on regional-scale source protection mapping, the Site is not located within Wellhead Protection Areas (WHPAs) or Significant Groundwater Recharge Areas (SGRAs); however, a small portion of the Site is located within a Highly Vulnerable Aquifer (HVA). The Site is also partially located within the TRCA regulated areas in the vicinity of the tributary crossing.

A number of tributaries of the Don River West Branch, Don River East Branch, and East Humber River are located within 1 km of the Site, including the onsite tributary approximately 750 m east of Jane Street. Based on the Block 27 Subwatershed Study (Cole, 2017), the upstream reach of the onsite tributary is ephemeral. The channel flows through agricultural fields and only conveys surface flows during the spring freshet and after major rainfall events. However, the downstream of this this tributary have permanent stream flow. The tributary is located within the Greenbelt Plan Area.

As discussed in Section 2.4, the east part of the Site is within the ORM. Part of the ORM is identified as an Environmental Significant Areas (ESA), and lies within the eastern portion of the Site. It is known as Maple Spur and is an Area of Natural and Scientific Interest (ANSI).

Ministry of Natural Resources and Forestry (MNRF) online mapping indicates the Site is in close proximity to several wetlands and woodlots. Roadside ditches and/or swales generally existed along both sides of the Site. The ditches were covered with grass, vegetation and shrubs; however, gabion stones lined portions of the south ditch invert to the east of Keele Street.

The natural features located within a 1 km buffer of the Site are illustrated on Figure 8.

3 INVESTIGATION PROCEDURES

3.1 Geotechnical Drilling and Testing

Thurber conducted a geotechnical investigation at the Site in July 2020 (Thurber, 2020). Thirteen boreholes were drilled to depths ranging from 3.7 m to 31.1 m (Boreholes 20-01 to 20-13). The geotechnical borehole logs were used to understand local geology of the Site. The locations of the boreholes and monitoring wells are shown on Figure 9. Record of borehole sheets are provided in Appendix B.

Based on the borehole logs, the overburden material at the Site consists of a thin layer of asphalt or granular fill overlying a complex interbedding of native deposits consisting of silty clay till, silt and sand till, and clayey silt with interspersed layers of sand to silt. The thickness of sand to silt and sand layers ranged from 0.7 m to 3 m. This unit is believed to correspond to the ORM Aquifer.

3.2 Hydrogeological Investigation

To support the hydrogeological investigation, 12 monitoring wells, including 4 pair of nested wells, were installed in selected boreholes. Monitoring wells were considered to be shallow and deep wells depending on the depth of installation and the unit in which they were completed. Each monitoring well was developed following completion of drilling by removing a minimum of 3 well volumes of water or until dry to reduce silt or drilling debris from the sandpack and well casing. A map illustrating the location of the boreholes is provided on Figure 9.

The monitoring wells were used to measure groundwater levels, collect samples for groundwater quality analyses, and estimate hydraulic conductivity of the screened units. The nested deep and shallow monitoring wells were also installed to study the vertical groundwater gradient beneath the Site. Monitoring well details are summarized in Table 3-1.

Monitoring Well No.	Ground Elevation (m)	Well Depth (m)	Well Diameter (m)	Screen Length (m)	Screened Geologic Unit
20-01	271.44	4.55	0.051	1.52	Clay (till) / Sand
20-03-S	272.73	3.03	0.051	1.52	Gravelly Sand/ Organic Silt / Clay(till)

Table 3-1 – Monitoring Well Details

Monitoring Well No.	Ground Elevation (m)	Well Depth (m)	Well Diameter (m)	Screen Length (m)	Screened Geologic Unit
20-03-D	272.72	7.60	0.051	1.52	Silt and Sand / Clay(till)
20-05	290.97	29.13	0.051	3.05	Sand / Silt
20-06	291.49	6.64	0.038	1.52	Sand
20-07	298.20	4.35	0.051	3.05	Clay (till) / Silt and Sand
20-09-S	310.70	3.00	0.051	1.52	Clay(fill) / Organic Silt / Silt
20-09-D	310.68	6.04	0.051	1.52	Clay(till)
20-10-S	291.67	2.79	0.051	1.52	Clay(till) / Silt
20-10-D	291.73	5.94	0.051	1.52	Silt
20-12-S	295.59	2.87	0.051	1.52	Silt and Sand (fill)
20-12-D	295.65	10.65	0.051	1.52	Silt

3.3 Single Well Response Tests

Rising head single well response tests (slug tests) were carried out on all monitoring wells. The tests were completed using the following method:

- In advance of conducting the slug tests, the monitoring wells were developed by withdrawing a minimum of three well volumes of groundwater to remove excess sediment and to improve the transmissivity of the sand pack and well screen;
- Once the water level returned to a stabilized level, the static water level was measured and recorded, and a datalogger was inserted into the well approximately 1 cm to 5 cm from the bottom of the well. The datalogger was set to record water levels every 0.5 to 5 seconds, depending on the anticipated rate of recovery of each well;
- A slug of groundwater was removed from the well to induce a change in hydraulic head (rising head test);
- Manual and electronic measurements of the water level were recorded until the water level in the well recovered sufficiently, and

 Manual measurements were compared to electronic measurements for quality control of the data.

3.4 Groundwater Sampling and Chemical Analysis

Groundwater quality samples were collected from selected wells for the purpose of considering disposal options and potential treatment needs at a preliminary level. The results obtained herein were representative of the water sampled from the selected wells at the time of sampling and provide a general understanding of groundwater quality under those conditions; however, the water quality may vary significantly from the results obtained based on location, time, meteorological conditions, and in particular based on construction and dewatering methods. The concentration of suspended solids in the groundwater or in water that is collected during construction dewatering (e.g., from a sump in an open excavation) will significantly affect the concentrations of many regulated parameters, particularly metals. The value of testing groundwater quality during the investigation is primarily to identify the types of contaminants that may need to be managed, the extent to which they are dissolved and therefore unlikely to be filtered by physical means alone, and the presence of anthropogenic contaminants that are listed in the given discharge criteria that may require specific treatment.

The monitoring wells were developed on July 21, 2020, prior to any sampling or in-situ testing, by purging at least three well volumes or to dry to increase the representativeness of the natural groundwater in the well. Development was assessed to be completed based on the number of well volumes purged, stabilization of general chemistry parameters of the pumped groundwater (pH, temperature, conductivity) over time, and qualitative observations such as a decrease in turbidity of the pumped water.

Groundwater quality samples were collected from 3 monitoring wells (20-03D, 20-06, and 20-09D) on July 29, 2020. The collected samples were sent to SGS Canada Inc. (SGS) for testing against the City of Vaughan Sewer By-law as well as comparison of various parameters such as metals, inorganics and general chemistry parameters to the Provincial Water Quality Objectives (PWQO). In addition to the unfiltered samples, a filtered metals and Total Suspended Solids (TSS) sample was submitted to estimate the extent to which these components can be filtered.

4 TESTING RESULTS AND ANALYSIS

4.1 Groundwater Levels

Groundwater levels at monitoring wells were measured manually on July 28 and September 25, 2020, as summarized in Table 4-1. Additionally, data loggers were installed in 8 monitoring wells to record hourly groundwater levels and capture the range of water level fluctuations at these locations in greater detail.

Monitoring	Ground	July 28, 2020		September 25, 2020	
Well No.	(m)	Depth (m)	Elev. (m)	Depth (m)	Elev. (m)
20-01	271.44	2.8	268.6	3.2	268.2
20-03-S	272.73	dry	dry	dry	dry
20-03-D	272.72	4.5	268.2	5.1	267.6
20-05	290.97	26.0	265.0	26.1	264.8
20-06	291.49	3.2	288.3	3.4	288.1
20-07	298.20	2.3	295.9	2.6	295.6
20-09-S	310.70	1.8	308.9	2.00	308.7
20-09-D	310.68	1.7	308.9	2.0	308.7
20-10-S	291.67	dry	dry	dry	dry
20-10-D	291.73	dry	dry	dry	dry
20-12-S	295.59	dry	dry	dry	dry
20-12-D	295.65	10.2	285.4	10.6	285.1

Table 4-1 – Measured Groundwater Levels at Monitoring Wells

The water level elevations in the monitoring wells ranged from 265.0 m to 308.9 m. The highest groundwater level (Elev.308.9 m, depth 1.8 m) was measured in Monitoring Well 20-09D and the lowest water level (Elev. 265.0 m, depth 26.1 m) was measured in Monitoring Well 20-05.

Based on the measured groundwater levels on July 28, 2020, the local shallow lateral groundwater flow generally follows Site topography. Shallow groundwater in the eastern portion of the Site (within the ORAC) flows easterly toward Don River East Branch while shallow groundwater in the western portion of the Site flows westerly toward Don River West Branch.

Additional groundwater level monitoring events of onsite wells will be conducted on a bi-monthly basis for a duration of two years to July 2022 to capture seasonal groundwater level fluctuations. The additional monitoring results and observed long-term trends in groundwater levels at the Site will be documented in the updated hydrogeological investigation report which will be submitted following the completion of the monitoring program.

The vertical hydraulic gradient was also estimated at the monitoring well nests to characterize the general vertical groundwater flow at the Site. Table 4-2 below summarizes the calculated vertical hydraulic gradient at the well nest pairs for the water level monitoring events conducted on July 28 and September 25, 2020.

Monitoring Woll No.	Vertical Hydraulic Gradient			
Monitoring well No.	July 28, 2020	September 25, 2020		
20-03-S/D	-	-		
20-09-S/D	-0.01	0.00		
20-10-S/D	-	-		
20-12-S/D	-	-		

Table 4-2 – Calculated Vertical Hydraulic Gradient

Notes:

Negative values indicate an upward gradient; positive values indicate a downward gradient.

'-' indicates that the vertical hydraulic gradient could not be estimated due to water level measurement(s) for one or both wells being unavailable.

The magnitude of vertical hydraulic gradients observed at Monitoring Wells 20-09S/D on July 28, 2020 was estimated to be relatively small (<-0.05 m/m) and can be considered as near neutral gradient. Long-term monitoring data will be used to calculate the vertical hydraulic gradients over time to determine stabilized gradients.

4.2 Hydraulic Conductivities

Single-well hydraulic tests were conducted between July 21, 2020 and July 28, 2020 in 7 selected monitoring wells. Hydraulic conductivity estimates were obtained using the Hvorslev method (1951). Estimated K values are presented in Table 4-3. A summary of Hvorslev calculations and plots of the slug test results are presented in Appendix C.

Monitoring Well No.	Well Screen Bottom Elevation (m)	Well Screen Top Elevation (m)	Screened Geologic Unit(s)	Hydraulic Conductivity (K) (m/s)
20-01	266.92	268.44	Clay (Till) / Sand	4.8 x 10 ⁻⁴
20-03-S	269.68	271.21	Gravelly Sand/ Organic Silt / Clay(Till)	-
20-03-D	265.10	266.62	Silt and Sand / Clay(Till)	7.7 x 10⁻⁵
20-05	261.86	264.91	Sand / Silt	5.5 x 10 ⁻⁶
20-06	284.48	286.01	Sand	6.6 x 10 ⁻⁶
20-07	293.76	296.80	Clay (Till) / Silt and Sand	1.0 x 10 ⁻⁸
20-09-S	307.70	309.22	Clay(Fill) / Organic Silt / Silt	3.4 x 10 ⁻⁸
20-09-D	304.71	306.23	Clay(Till)	2.3 x 10 ⁻⁸
20-10-S	288.90	290.42	Clay(Till) / Silt	-
20-10-D	285.89	287.42	Silt	-
20-12-S	292.75	294.27	Silt and Sand (Fill)	-
20-12-D	285.13	286.66	Silt	-

Table 4-3 – Estimated Hydraulic Conductivities

Monitoring wells were either dry or did not contain enough water to conduct a slug test.

The estimated in-situ K values for the silty clay and clayey silt overburden materials range between 1.0×10^{-8} m/s and 3.4×10^{-8} m/s. The hydraulic conductivity values observed within the coarser materials (silty sand and gravelly sand) range between 5.5×10^{-6} and 4.8×10^{-4} m/s.

4.3 Groundwater Quality

The groundwater chemical testing results were compared with the City of Vaughan Sewer Bylaw. Wherever applicable, selected parameters were also compared with the PWQO criteria. The certificates of analysis are provided in Appendix D. Based on laboratory analyses, the results for groundwater samples met the City of Vaughan Sanitary Sewer Discharge criteria. The exceedances of the City of Vaughan Storm Sewer Discharge limits are summarized in Table 4-4 and the exceedances of the PWQO criteria are summarized in Table 4-5.

Sample ID	Parameter	Units	Measured Concentration	City of Vaughan Storm Sewer Limit
70.02	Total Suspended Solids	mg/L	39	15
20-03D	Manganese (total)	mg/L	0.157	0.15
20.06	Total Suspended Solids	mg/L	59	15
20-06	Manganese (total)	mg/L	0.642	0.15
20.00	Manganese (total)	mg/L	2.91	0.15
20-09D	Total Kjeldahl Nitrogen	N mg/L	2.1	1

Table 4-4 – Table of Measured City of Vaughan Sewer Use by Law Exceedances

Dewatering discharge could not be discharged to storm sewer without pre-treatment.

	Table 4-5 –	Table o	of Measured	PWQO	Exceedances
--	-------------	---------	-------------	-------------	-------------

Sample ID	Parameter	Units	Measured Concentration	PWQO Limit
	Aluminum (total)	µg/L	1370	75
	Aluminum (0.2µm)	mg/L	0.14	0.075
20-03D	Cobalt (Total)	µg/L	1.79	0.9
	Iron (Total)	µg/L	1590	300
	Phosphorus (Total)	mg/L	0.075	0.01
	Aluminum (total)	µg/L	1990	75
	Aluminum (0.2µm)	mg/L	0.23	0.075
	Cobalt (Total)	µg/L	6.5	0.9
20-06	Iron (Total)	µg/L	2410	300
	Phosphorus (Total)	mg/L	0.158	0.01
	Uranium (Total)	µg/L	5.11	5
	Cobalt (Dissolved)	µg/L	2	0.9
	Cobalt (Total)	µg/L	5.82	0.9
	Phosphorus (Total)	mg/L	0.021	0.01
20.000	Uranium (Total)	µg/L	10.4	5
20-09D	Cobalt (Dissolved)	µg/L	5.61	0.9
	Phosphorus (Dissolved)	mg/L	0.013	0.01
	Uranium (Dissolved)	µg/L	8.92	5

On review of the filtered analytical results, including dissolved parameters, filtering lowered some parameters concentrations below the PWQO limits, but not all. Groundwater of the quality that

was observed herein could not be discharged to the natural environment without pre-treatment. Further, the above results suggest that while filtration may have removed some metals, it did not lower all parameters to within PWQO limits.

5 DEWATERING ASESSMENT

5.1 Construction Dewatering

Groundwater taking for construction dewatering is governed by the Ontario Water Resources Act (OWRA), Environmental Protection Act (EPA) and the Water Taking and Transfer Regulation 387/04, a regulation under the OWRA.

If the water taking rate for this project will be greater than 50,000 L/day and less than 400,000 L/day, registration on the Environmental Activity and Sector Registry (EASR) is required. If the water taking rate will be greater than 400,000 L/day, a Category 3 Permit To Take Water (PTTW) is required.

Preliminary assessment of the need for a Category 3 PTTW or registration on the EASR is provided, based on dewatering estimates presented in this report; however, final assessment will need to be determined following detailed design and investigation. For the purpose of water taking permitting, the estimated withdrawal rates are conservatively assessed in order to reduce the likelihood that actual pumping rates might exceed the permitted allowance thereby stopping work and delaying the project.

5.1.1 West Don River Culvert

Based on design information available to date, it is anticipated that dewatering will not be required at the West Don River culvert. One nested Monitoring Well (20-03-S/D) has been installed at the location of the existing culvert. Over the period of the monitoring program to date, the shallow monitoring well was dry. The water level elevations in the deep monitoring well ranged from 268.2 to 267.6 m. The highest groundwater elevation was 268.2 m (depth 4.4 m), measured July 2020. Assuming the maximum depth of excavation for replacing or extending the culvert is less than 4 m, no significant construction dewatering is anticipated. Any perched water or rainfall would need to be managed. Additional groundwater level monitoring events will be conducted to capture seasonal groundwater level fluctuations.

5.1.2 GO Transit Barrie Line Grade Separation

Two monitoring wells have been installed at Kirby Road and Barrie Go Rail Crossing: one shallow monitoring well to a depth of 7 m (MW 20-06) and one deep well to a depth of 29 m (MW 20-05).

Over the course of the monitoring program to date, the highest groundwater elevations at the shallow and deep monitoring wells were 288.3 m (depth 3.7 m) and 264.9 m (depth 26.6 m), respectively. As described in Section 4.1, the local shallow groundwater flow generally follows Site topography and it is anticipated that the ground water levels will be near the ground surface in the low wet area located to the north of Kirby Road and Barrie GO Rail Crossing. However, the groundwater profile cannot be determined based on the limited data obtained during the preliminary investigation and additional monitoring wells are required to be installed to confirm the water levels during the detailed design.

The subsurface stratigraphy encountered in the boreholes generally consisted of a topsoil or fill layer overlying silt deposits. Underlying the silt was a layer of sand, with estimated thicknesses of approximately 1.1 m and 2.3 m as encountered in borehole 20-05 and borehole 20-06, respectively. The sand layer was encountered from Elev. 288.0 m to 286.9 m in Borehole 20-05 and from Elev. 286.6 m to 284.3 m in Borehole 20-06.

Overpass Structure

The preliminary profile drawings indicate that existing road/rail grades are near Elev. 292.3 m and the proposed road grade on the overpass will be near Elev. 302.5 m. Excavation for construction of pile caps for the overpass structure is expected to depths of about 2 to 3 m below the existing grade, to approximate elevation of 288 m to 289 m. It is expected the bridge foundation pile caps will be installed at depths within the surficial fill and clayey silt materials.

Underpass Structure

The preliminary profile drawings indicate that existing road/rail grades are near Elev. 292.3 and proposed road grade in the underpass will be near Elev. 285.0, with foundation construction to elevations of 282 to 283 m. It is understood that the estimated depth of excavation for underpass structure is approximately 8 m for the road excavation, and locally to 10 m depths for foundation elements. As such, the excavation is expected to extend through the sand layer and into the clay till. Based on the borehole logs, these layers will likely behave as an unconfined aquifer.

5.1.3 Municipal Service Installation

At this time, there is not sufficient design information to provide preliminary dewatering estimates for the municipal service installation. Once engineering drawings for municipal services are finalized, detailed dewatering estimates should be completed during detailed design, well in advance of construction to support permitting requirements. Based on our understanding of the geology and water table at the Site, it is anticipated that minimal dewatering will be required for

open cut installation of shallow municipal services, if the services are proposed to be installed not deeper than 3 m. However, it will be necessary to refine the analysis of the hydrogeological conditions, notably near Borehole 20-01, and estimate dewatering rates and radius of influence during the detailed design stage.

It is anticipated that water may be perched locally within the native silty clay till and layers of silts and sands and that it would be of limited volume. It is further anticipated that groundwater flow rates through the silty clay till would be low due to the relatively low hydraulic conductivity of that soil. However, water taking estimates must include rainfall and surface water if they cannot be kept separate from groundwater, and depending on the number and size of the excavations, the need for some form or water taking permit is likely.

5.2 Dewatering Estimates

The following approach was used to estimate the budgeted peak water taking rate for the grade separation options:

- A base ground water extraction flow rate was estimated, and a factor of safety of three was applied to this flow rate to provide an allowance for removal of water from soil storage, variation in hydraulic conductivity, actual excavation dimensions and geometry, and ground water levels due to seasonality or other factors;
- An allowance for removal of rainfall into the excavation was included, assuming 24 hours are used to remove 50 mm of rainfall; and,
- Lowering of groundwater to about 1 m below the base of the excavation to facilitate a dry, stable work area was assumed.

The water taking will be temporary in nature for the purpose of construction dewatering. Dewatering rates were estimated using the Dupuit analytical solution for an unconfined aquifer provided in Powers et al. (2003).

For the purpose of estimating water taking flow rates, it is assumed that support of excavation would not be watertight. The use of watertight support of excavation would greatly reduce the required water taking rates.

The estimated maximum construction dewatering pump rates and radii of influence for the analyzed excavations are summarized in Table 5-1. Dimensions for the excavations of the proposed grade separation are based on the preliminary profile design provided by HDR. The calculations and equations for the peak flow rate and radius of influence are provided in Appendix E. Figure 10 shows the extent of the estimated Zone of Influence (ZOI)

Table 5-1 – Table of Estimated Construction Dewatering Volumes

Construction Element	Base Groundwater Flow (L/day)	Groundwater Flow with Safety Factor of 3 (L/day)	Stormwater Allowance (L/day)	Estimated Peak Flow Rate (L/day)	Approx. Radius of Influence (m)
Overpass Option	22,000	66,000	8,000	74,000	10
Underpass Option	259,000	777,000	313,000	1,090,000	70

5.3 Permanent Drainage

Excavation for construction of the underpass is expected to extend 6.3 m below the groundwater level, through a silt layer, a permeable sand layer, and into silty clay till. If the underpass will be designed to be fully waterproof then it will need to be designed to resist uplift. Otherwise permanent drainage of groundwater is anticipated to be required, subject to approval by external agencies including TRCA, as part of the location appears to be within TRCA regulated area.

6 IMPACT ASSESSMENT

Within the construction dewatering zone of influence, potential impacts such as ground subsidence, reduction in groundwater flow to groundwater users and watercourses, and other impacts must be considered. The potential impacts are discussed herein, and monitoring and potential mitigation measures are discussed in the following section.

6.1 Geotechnical Impacts

Dewatering of open excavations for the underpass within the shallow silty sand and till materials is expected to result in a drawdown of the water table within the overburden for a maximum estimated radius of influence of 70 m. A maximum drawdown of 7.3 m was estimated for the underpass excavation.

In general, the land uses surrounding the Site are primarily agricultural, with a few residential, commercial and natural uses. The underpass is generally underlain by hard native clay till or very dense sand and silt till.

The potential for settlement is most likely to occur where the estimated drawdown is significant, structures are located within close proximity to the dewatering, and soils within the drawdown depths are compressible. The potential settlement of the railway was analyzed assuming the general stratigraphy is consistent with the closest boreholes (Boreholes 20-05 and 20-06). Although the magnitude of the drawdown is high and the structure is within close proximity to the maximum drawdown, the drawdown occurs primarily in very stiff to hard/very dense glacial till overburden. Under these conditions the estimated settlement is anticipated to be less than 15 mm.

A preconstruction survey of all structures and utilities within the radius of influence should be considered prior to dewatering activities, and a survey should be considered during dewatering to assess if any undesirable deformation has occurred.

A settlement monitoring program will need to be designed and implemented in accordance with railways requirements. The monitoring of track settlement should be accomplished by means of surface and subsurface settlement points. The finalized monitoring program should be reviewed and approved by the railway and their review consultant.

If significant sediment and fines are removed during the dewatering due to improperly filtered extraction wells then ground loss and settlement beyond that described above could occur.

6.2 Impact to Surface Water and Natural Environment

The lowering of the shallow groundwater level due to construction dewatering could potentially reduce the groundwater input into nearby groundwater dependant features. There is one surface water (Don River West Branch) crossing along the Site. However, this tributary is not groundwater-dependant in this part of the watershed, and is not likely to be affected by changes to the groundwater system. In addition, given the low permeability of the silty clay till which underlies the Site, and given the limited radius of influence of the dewatering, the impact of water taking for construction on water quantity in the nearby tributaries is anticipated to be minimal.

Permanent drainage may be required for a drained underpass grade separation configuration if permitted, which may affect local groundwater features if implemented. If either the overpass configuration is selected, or if a watertight underpass configuration is selected, then permanent drainage would not be anticipated for the construction elements and thus long-term impact to water quantity for the surface water features would not be anticipated.

Dewatering discharge that may be directed to nearby tributaries could potentially alter the physical, chemical and thermal regime of the receiving streams. Groundwater of the quality that was tested herein could not be discharged to the natural environment without pre-treatment due

to exceedances of the PWQO limits and sewer use limits; however, with sufficient treatment it is anticipated that the groundwater could be discharged without impacting surface water quality.

6.3 Impacts to Water Well Users

Construction dewatering for the underpass is expected to result in a maximum radius of influence of approximately 70 m in the shallow silty sand and silty clay to clayey silt till. Groundwater dewatering in these shallow materials would not be anticipated to impact domestic wells that are assumed to be screened within the deeper aquifers.

A door-to-door well survey was not requested for the scope of the hydrogeological investigation. While no well users are anticipated to be affected, it is recommended that a private well survey be conducted if one has not been previously conducted by others in advance of construction to identify potential well users in the area and to establish baseline water levels and water quality prior to, during, and following construction.

6.4 Other Potential Impacts

With prolonged dewatering activities there can be potential for inorganic or organic chemical compounds present within the radius of influence to migrate and to enter open excavations where sufficient flow rate and time permit. Considering the temporary duration of dewatering activities, as well as the limited commercial and industrial development in the area, there is a low likelihood that contaminants would be mobilized during dewatering activities. If any contaminated groundwater is collected from the dewatering operations it must be treated to meet any discharge criteria or disposed of at a facility licensed to handle such materials.

7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Water Taking Permit

Given that the estimated peak water taking rate for the underpass option appears to be greater than 400,000 L/day, it is anticipated that a Category 3 Permit To Take Water would be required. The PTTW would include terms and conditions that must be followed, which include performance, monitoring and reporting requirements among others. The current fee from MECP for the Category 3 PTTW application is \$3,000.

Since the preliminary dewatering estimate for the overpass option appears to be less than 400,000 L/day but greater than 50,000 L/day, registration on the EASR would be required.

Regardless of the preliminary analysis herein; the dewatering estimates and permitting requirements will need to be determined during detailed design.

7.2 Discharge of Groundwater

It is anticipated that with sufficient dewatering and treatment methods designed by the Contractor and its dewatering and water treatment specialists, groundwater that is removed from the subsurface could be discharged either to the natural environment by meeting the PWQO limits or to storm or sanitary sewer by meeting the City of Vaughan sewer use Bylaw limits.

Groundwater of the quality that was observed herein could not be discharged to the natural environment or to storm sewer without pre-treatment due to exceedances of the PWQO limits and storm limits of the City of Vaughan sewer use Bylaw, respectively.

Water quality observed during construction will vary from the results obtained herein based on a number of factors, and in large part are a function of the amount of solids/sediment in the water. The Contractor would need to consult with its dewatering and water treatment specialists to develop methods and means to meet the PWQO or selected sewer-use limits based on the results presented herein and on any additional testing by the Contractor and/or its consultant. An experienced dewatering contractor and water treatment specialist are recommended to be retained by the Contractor to design and operate dewatering and/or treatment operations as required.

Prior to discharge to a sewer, a discharge agreement would need to be obtained by the Contractor from the City of Vaughan. Confirmation of discharge water quality and sufficient sewer capacity may be required. Discharge to the natural environment may required approval by MECP, MNRF, TRCA, and/or others depending on the location and approach.

7.3 Control of Impacts and Monitoring Program

The following measures are recommended to mitigate the potential for the dewatering activities to cause negative impacts as assessed previously:

- Monitoring of water quality for groundwater collected within the excavation dewatering system to confirm the water quality is appropriate for the selected discharge option.
- Where possible, if discharging to the natural environment, it is recommended that groundwater be discharged at least 30 m away from any water bodies including streams.

- If discharge to sewers or the natural environment is proposed, sufficient dewatering and treatment methods are required to ensure the discharge water quality meets the required limits. Suitable field methods and/or treatment would likely include measures to address suspended sediment and associated metals, and potentially to adjust temperature to acceptable levels. The operation and monitoring of discharge facilities should be carried out by an experienced dewatering contractor and water treatment specialist familiar with fisheries and water quality requirements.
- Where discharge is to ground surface or water course, temporary erosion control measures should be developed and installed to control erosion at the discharge points.
- A door-to-door well survey was not requested for the scope of the hydrogeological investigation. While no well users are anticipated to be affected, it is recommended that a private well survey be conducted if one has not been previously conducted by others in advance of construction to identify potential well users in the area and to establish baseline water levels and water quality prior to, during, and following construction.
- During the detailed design stage, it will be necessary to refine the analysis of the hydrogeological conditions along the servicing alignment to estimate dewatering rates and radius of influence. These findings will be used to confirm the water takings requirements and the appropriate approvals from the MECP prior to commencement of construction. They will also assist in determining whether a private well survey is warranted.
- Actual daily water taking volumes must be recorded daily. The values must be registered on the Regulatory Self-Report System by March 31 for the previous year.
- Additional monitoring and terms and conditions will apply as determined by the water taking permitting, by any discharge agreement or permit, and by other regulatory or jurisdictional bodies.

8 CLOSURE

We trust that this report provides the information you require at this time. If you have any questions regarding this report, please contact the undersigned at your earliest convenience.

Yours truly, Thurber Engineering Ltd.

Alireza Hejazi, Ph.D., P.Eng. Senior Hydrogeologist

David Hill, M.A.Sc., MBA, P.Eng., P.Geo. Senior Hydrogeologist / Review Engineer

9 **REFERENCES**

- Chapman, L.J. and Putnam, D.F. 1984. *The Physiography of Southern Ontario*, Third Edition. Ontario Geological Survey, Ontario Ministry of Natural Resources.
- City of Vaughan Official Plan volume 1 2019 Office Consolidation As Partially Approved by the Ontario Municipal Board.

Cole Engineering Group, Block 27 Subwatershed Study, City of Vaughan, June 2017.

Hvorslev, M.J., 1951. *Time Lag and Soil Permeability in Groundwater Observations*. U.S. Army Corps Engrs. Waterway Exp. Sta. Bull. 36, Vicksburg, Miss.

Ministry of the Environment, Conservation and Parks. 2020. Source Intake Protection Atlas.

Ministry of the Environment, Conservation and Parks. 2019. Permit to Take Water Database.

Ministry of the Environment, Conservation and Parks. 2019. Water Well Information System.

Ministry of Natural Resources and Forestry, Natural Heritage Information Centre database – Make a Heritage Map. Accessed November 2016, Queen's Printer for Ontario, 2015.

Ontario Geological Survey. Bedrock Geology of Ontario Seamless Coverage Data Set 6. 2005.

- Ontario Geological Survey. Quaternary geology, seamless coverage of the province of Ontario: Ontario Geological Survey, Data Set 14. 1997.
- Powers, J. P., Corwin, A. B., Schmall, Paul C. and Kaeck, W. E. 2007. *Construction Dewatering and Groundwater Control: New Methods and Applications*, Third Edition, New York, New York: John Wiley & Sons.
- Toronto and Region Conservation Authority, Don River Watershed Plan, Geology and Groundwater Resources Report on Current Conditions, 2009.
- Toronto and Region Conservation Authority, Don River Watershed Plan, Implementation Guide, 2009.
- Thurber Engineering LTD. Draft Preliminary Geotechnical Investigation Report, Class EA Study For Kirby Road Widening From Jane Street to Dufferin Street, City of Vaughan, Ontario, November 2020.

STATEMENT OF LIMITATIONS AND CONDITIONS

1. STANDARD OF CARE

V@#AÜ/][¦d^@ee/å\^}Á;l^] æt^åÅgi Áns&&[¦åægi &r^, ãr@A*/}^!æjå&&x}] &råÅk}*äj^^läj*A[!Å?;cā[}{ ^}cæk/&[}*`|cij*Á;!æstca&/•Ági Ás@-Áse]]|a8æaa|^Áo;!ä*åa8ca[}ÈÄ Þ[Á]c@:!Á]æs!ægi c?É%vc]!/•••^åA[i/Áq]]a?åÊ556-Ági c/}å^åA[:Á; æaå^ÈÄ

2. COMPLETE REPORT

CE[Áŝ[&č{^}œ ÉdA &{|å•Édáæææðæ) á Áa*/•Éð,@ c@:Á*|^&d[}&&{|}&e^*É*/>^!æ*á Áæe Ájædót, Ác@ábe•a"} { /> cóæ/ Áæ/á ácæ ÁU^][!dÉð, @ &&@ábæ{}; á Aæ/á •č{{æ* /Ajæč !^ Áæj á Áæ Áj[cób] c*} á ^ á Átí Ár cæj á Áæ{]}^ Áj ãc@ * d/ ^*!^} & Atí Ác@ Ág] • d* &ati Å * Atá V@ !à^!Áæj á Áœ ÁO[a*) dÉæj á Áæj ^ Å cœ!Á^][] • æj - Å !Åš[& č{ } œ A;!^] æ/á Åa^ Á/@ !à^!Á{!Å© ÁO] a*} dA/ [ææçi/ Átí Ác@ Á] ^ &ãææaj } • Aé^c, ^^) Á V@ !à^!Áæj á Ác@ ÁO[a*) dEæj á Áæj ^ Å cœ!Á^][] • æj - Å !Åš[& č{ } œ A;!^] æ/á Åa^ Á/@ !à^!Á{! Åc@ ÁO] a*} dA/ [ææçi/ Átí Ác@ Á] ^ &ãææaj } • Aé^c, ^^] Á V@ !à^!Áæj á Ác@ ÁO[a*) dEæj á Áæj ^ Å cœ!Á^][] • æj - Å !Åš[& č{ } e A;!^] æ/á Åa^ Á/@ !à^!Á{! Åc@ ÁO] a*} dA/ [ææçi/ Átí Ác@ Á] ^ &ãæA æ/á* • &i a^ à Aœ/i * 3 Æ #]Á -Á_@ &@átí * ^ cœ!Áx[} • cæ* cÁc@ ÄU^][dEĂ

œÁJÜÖÖÜÁUÁŰÜUÚÖÜŠŸÁNÞÖÖÜÙVŒÐŐÁPÒÂMŐŐÖÙVQÞÙÄÜÓÔUTT ÒÞÖŒØDÞÙÁÐÐÓÁJÚŒQÞÙÁÒÝÚÜÒÙÙĊÖÆÖÜÓZÜÖÞÔÒÁT WÌVÁÓÁ T΅ÁUÁPÒÁ PUŠÒÁJØÁPÒÃIŎÚUÜVÄ/PWŰÓŎÜAQÁEUVÁÌÒÙÚUÞÙØŠÒÆUÜÁNÙÒŐŸÁDEŸÁJŒVŸÁJØÁUÜVQÞÙÁJØÁPÒŨŎĹUÜVÁY QPUVWÁÜÒZÒÜÒÞÔÒÁ VUÁPÒÝ PUŠÒÁIŎÚUŰVĂ

3. BASIS OF REPORT

V@AÜ^][¦dÁœze Ás^^}Á;\^] æð^åÁ[¦Áv@A]^8ãæAá ær Ébá^ç^|[]{ ^}dÉbá^e ær]}Á;àb/8cæj^• ÁejåÁ;`i][•^• Ávœædý ^!^Aáv• &iæ^àák[Á/@;ià^ikâ* Áv@AÔjæ];dÉv@A æj]]ææiajāč ÁejåÅ{^[ææiajāč Áj-Áeġ^Afj á j * ÉÁ^&[{ { ^}åæeaj} • ÉÁ^&] * ÉA^&] * ÉÁ^&] * ÉA^&] * É

4. USE OF THE REPORT

V@Áġ.{¦{æaā}}ÁġāÁ]ājāj•Á¢]¦^••^àÁġÁœÁÜ^][¦ÆÄ;kæj^Áġ[&`{^}œÁ[k];a*á∱A±o∯A±o@ÁÜ^][¦Æå±^Á;kæA[|^Áæ^Á[]^kæ^A[]^kæ]A ÚŒÚVŸĂTŒŸÁNUÒÁUŮÄÜŎŠŸÁNÚUÞÁ/PÓÄÜÒÚUÜVÁUÜÁÆÞŸÁÚUÜVQUÞÁ/PŎÜÒUØÁYQVPUWVÁ/PWŰÓŎÜ¢ÙÁYÜQVÒÞÁÔUÞÙÒÞVÁÆÞÖÂUNÔPÁ NÙÒÂJPŒŠŠÁŎÒÁJÞÂWÔPÁ/ŎÜTÙÁÆÞÖÂŪUÞÖQYQUÞÙÁEÙÁ/PWŰÓŎÜÁTŒŸÁÔÝÚÜÒÙŮŠŸÁEĽÚÚÜUXÒĚAJ.}^\;@jájábjåÁ{]^¦ã@Á{|Á@Á&[}~}o}oÁ [ÁœÁÜ^][¦má^[[}*ÁţÁ/@¦à^¦ÉÆ9*Á∱@&œÁ±Á@áÅjæćÁ(æ)^¢Á@ÁÜ^][¦Œã#ÁœÁ¥[|^Á^•][}•ãaţãčÁ;Á**&@Áœäå∱æċÉÅ/@¦à^¦áæ&A]@A[Á !^•][}•ãaţãčÁ;@ær[^ç^¦Áţ¦káæ{æ'^•Á`~~¦ååkî^Áæ}Å@áÅjæċÁ^o*|@j*Á{[{Á•^A;Á∞QÂŰ^][¦o∯ ã@u~ôA@{à?]e^A¢]imo}∱A[{ã•āj}ĚĂ

5. INTERPRETATION OF THE REPORT

- àD Ü^|āa) &^Á;}ÁÜ|[çāā^àÁQ;{}{ arti} kÁV@ Á ça ţ`arti}Áa) åÁQ;}&|` +ã;} ÁAQ;}caā}^âÁB;Á@ ÆÜ^][/d⁄@æç^Áa^^}Å;^] ad^âÁQ; ÁU@ Áa ara ă Á; Á@ Áa ara ă Á; Á ^çãa^} &^áæxá@ Æi;^A; Áā^ÁB;-]^&caī;} éAg; áA; Á@ Áa ara ă A; Ág; {}{ arti}}Á;]; (zãa^àÁk[Á@; A); [] ado áA; A ára Ág; [] áA ara áA; A arti; [] A ara áA; A ár Ág; A ara áA; A ara áA; A ara ara áA; A arti; [] arti; A [] cãa^àÁk[Á@; A]; A ara áA; A ára áA; A ara á

6. RELEASE OF POLLUTANTS OR HAZARDOUS SUBSTANCES

Õ^[c*&@] &&edh}*}*ä]^^!ä]^^!ä]*Áe)åÁ?}çä[]{ ^}cedh&[}*´j][b*&orÁ[-c*]Á@echÁc@Aj[c*]cadh4[Á?}&Z]`}c*!Aj[|]`cad)orÁ[!Á@ecæå[`*Á`à*cad)&^*Áe)åÁc@A][c*]cadh4[Á&ec*^Ác@Á**&ad]^ÉA/|^ae^A[!Áä;ä]^!*adh4~Ác@*^Á`à*cad)&^*ÉA/@!à^!A*@dHÁ@ec^Aj[ÁæecAá][*Á;áaOAÔ]a?}cAj}cAj}cAj}cAj ^*&ad]^ÉA/|^ae^A[!Áä;ä]^!*adh4[-Aj[|]`cad)orÁ[!Á@ecæå[`*Á*`à*cad)&^*ÉA/@!à^!A*&@H[[|]`cad)orÁ]!Á@ecæå[`*Á*`à*cad)&^*Á@echÁe^^}A*]^&ad&= ~*&ad]^ÉA/|^ae^A[!Áá;ä]^!*adh4[-Aj[|]`cad)orÁ[!Á@ecæå[`*Á*`à*cad)&^*ÉA/@!à^!A*&@H[[|]`cad)orÁ]!Á@ecæå[`*Á*`à*cad)&^*Á@echÁe^^}A*]^&ad&= cad&ac@A*(A*A*)^A#]^A*(A*A*)^A*]^A*(A*A*)^A*(A*

7. INDEPENDENT JUDGEMENTS OF CLIENT

V@ Ág + [{æati} Ěág c*]] ^^cæati} • Ág á Ág [}&l] • ág á á@ Áu^][lónbet^Ásæ ^ á Aev à Á v@ là^lor (fg c*l] !^cæati} Á Ák[} á atil }• Á^c^ad á ág c^• ct æatil } Á &[} ǎ & c*à Á ã cog Áská ^ aj ^ å Á & []^Á - Á^l; czv• Ěv@ là^lÁs[^• Á [onbet Asia 2* ^ å Af [} á ätá] * Á / (f Asia 2* à Asia 2* - à Asia 2* -

Figures

KIRBY ROAD CLASS EA STUDY VAUGHAN, ONTARIO HDR INC.

SITE LOCATION

АН	DRAWN BY
АН	DESIGNED BY
DH	APPROVED BY
1:20,000	SCALE
JULY 22, 2020	DATE
26130	PROJECT No.

LEGEND:

- Site
- Road
- Freeway
- Contour (masl)

KIRBY ROAD CLASS EA STUDY VAUGHAN, ONTARIO HDR INC.

TOPOGRAPHY

DRAWN BY	АН
DESIGNED BY	АН
APPROVED BY	DH
SCALE	1:20,000
DATE	JULY 22, 2020
PROJECT No.	26130

Road

Freeway

Watercourse

South Slope

200 100 200 m UTM 17 NAD 83

PHYSIOGRAPHIC REGIONS

DRAWN BY	АН
DESIGNED BY	АН
APPROVED BY	DH
SCALE	1:20,000
DATE	JULY 22, 2020
PROJECT No.	26130

KIRBY ROAD CLASS EA STUDY VAUGHAN, ONTARIO HDR INC.

SURFICIAL GEOLOGY

DRAWN BY	АН
DESIGNED BY	АН
APPROVED BY	DH
SCALE	1:20,000
DATE	JULY 22, 2020
PROJECT No.	26130

PROJECT No.

26130

KIRBY ROAD CLASS EA STUDY VAUGHAN, ONTARIO HDR INC.

MECP WELL RECORDS

АН	DRAWN BY
АН	DESIGNED BY
DH	APPROVED BY
1:20,000	SCALE
JULY 22, 2020	DATE
26130	PROJECT No.

AH	DRAWN BY
АН	DESIGNED BY
DH	APPROVED BY
1:20,000	SCALE
JULY 22, 2020	DATE
26130	PROJECT No.

UTM 17 NAD 83

	DRAWN BY	AH
n 00	DESIGNED BY	АН
	APPROVED BY	DH
	SCALE	1:12,000
	DATE	JULY 22, 2020
	PROJECT No.	26130

-	Site Boundary	(T_{n})	ZOI (Underpass)	_	Watercourse
Ħ	Railway		ANSI		Waterbody
	Road		Oak Ridges Moraine Boundary		Wooded Area
	Freeway		Green Belt Plan Area		
	Study Area (500 m Buffer)		Wetland		
	1 km Buffer		Data	Source: (Ontario Ministry of Natural Resources and Forestry - Provincial Mapping Unit

200 100 200 n UTM 17 NAD 83

KIRBY ROAD CLASS EA STUDY VAUGHAN, ONTARIO HDR INC.

ZONE OF INFLUENCE

FIGURE 10

АН	DRAWN BY
АН	DESIGNED BY
DH	APPROVED BY
1:20,000	SCALE
MAY 27, 2021	DATE
26130	PROJECT No.

Appendix A

MECP Well Records

MECP Well Record Summary Table

Well ID	UTM Coordinates Easting	UTM Coordinates Northing	Date Completed	Depth to Bedrock (m)	Well Depth (m)	Static Level (m)	Well Use
6906501	618503.6	4860672	1958-05-31	-	48.2	18.3	Supply Wells
6922776	618140	4860677	1993-03-06	-	0	0	Unknown
6906498	620342.6	4861019	1957-09-04	-	85.3	0	Monitoring and Test Hole
6922757	618012	4860943	1994-04-07	-	0	0	Unknown
6912554	618688.6	4861399	1974-09-06	-	43.6	32	Supply Wells
7052347	616642	4860454	2007-08-09	-	6.1	0	Observation Well
6915399	618814.6	4860573	1979-10-30	-	47.9	33.5	Supply Wells
6912202	620729.6	4861972	1974-07-08	-	70.7	27.4	Supply Wells
6906508	618875.6	4861126	1961-09-11	-	47.5	36.6	Supply Wells
6906612	618164.6	4860812	1958-07-22	-	33.5	9.1	Supply Wells
7239172	616514	4859949	2014-08-05	-	0	0	Unknown
6923932	619821.6	4861058	1997-06-26	-	8.2	6.4	Abandoned
6922649	618262	4861219	1993-03-19	-	0	0	Unknown
6917263	618714.6	4861323	1984-10-04	-	52.7	36.3	Supply Wells
6906496	618951.6	4860771	1954-08-02	-	53.6	36.6	Supply Wells
7115109	616677	4860526	2008-10-04	-	31.7	0	Abandoned
6906505	619970.6	4861241	1959-09-16	-	85	0	Monitoring and Test Hole
6922627	617071	4859955	1994-04-15	-	0	0	Unknown
6922775	617508	4860910	1993-03-08	-	0	0	Unknown
6906507	618886.6	4861302	1960-01-20	-	25.6	12.2	Supply Wells
6922654	618467	4861265	1994-04-29	-	0	0	Unknown
6922626	616395	4860360	1994-05-02	-	0	0	Unknown
6919295	616371	4860195	1987-08-05	-	42.7	4	Supply Wells
6906499	620477.6	4861078	1957-10-21	-	51.5	0	Monitoring and Test Hole
6929027	618171	4860799	2005-05-26	-	48.4	24.7	Supply Wells
6924017	619821.6	4861058	1997-07-21	-	82.9	0	Abandoned
6906610	618036.6	4860545	1954-08-26	-	21.3	18.3	Supply Wells
6906504	619999.6	4861282	1959-09-11	-	85.6	0	Monitoring and Test Hole
6906316	621128.6	4861412	1954-12-18	-	30.2	13.7	Supply Wells
6923114	618885	4861160	1994-09-26	-	51.2	36	Supply Wells
6922625	617363	4860481	1994-03-31	-	0	0	Unknown
6923931	619821.6	4861058	1997-06-26	-	7.6	7.6	Abandoned
6922660	617844	4860650	1994-02-02	-	0	0	Unknown
6915783	616714.6	4860573	1980-07-04	-	31.4	10.7	Supply Wells
6922803	618694	4860983	1994-07-27	-	56.4	39.3	Supply Wells
7280366	620852	4861161	2017-01-14	-	97.5	0	Other Status
6924001	616724	4860517	1997-06-20	-	31.4	11	Supply Wells
6912127	616409.6	4860198	1974-05-27	-	31.7	5.2	Supply Wells

MECP Well Record Summary Table

Well ID	UTM Coordinates Easting	UTM Coordinates Northing	Date Completed	Depth to Bedrock (m)	Well Depth (m)	Static Level (m)	Well Use
7150863	618633	4861317	2010-06-09	-	52.1	33.8	Supply Wells
6906503	620026.6	4861046	1959-08-31	-	83.8	13.1	Supply Wells
6922777	617622	4860197	1993-02-05	-	0	0	Unknown
6913971	617264.6	4860523	1977-04-26	-	29	16.2	Supply Wells
6906506	620498.6	4861537	1959-08-12	-	87.5	0	Monitoring and Test Hole
6906611	616947.6	4860165	1966-08-19	-	29.3	9.1	Supply Wells
6910566	616754.6	4860023	1971-03-11	-	31.4	9.1	Supply Wells
7115110	616656	4860511	2008-10-04	-	29.6	0	Abandoned
6906502	620232.6	4861324	1959-08-20	-	100.6	0	Monitoring and Test Hole
7043889	619356	4860689	2007-04-26	-	9.8	0	Abandoned
6924261	618190	4860748	1997-10-30	-	39.6	21.3	Supply Wells
6922769	616818	4860218	1993-01-26	-	0	0	Unknown
7115111	616706	4860550	2008-10-04	-	25.6	0	Abandoned
7275412	620940	4861221	2016-10-12	-	3.7	0	Monitoring and Test Hole
6914568	616634.6	4860503	1978-05-23	-	29.9	14	Supply Wells

Appendix B

Record of Borehole Sheets

			F	REC	0	RC) (OF BOREHOLE 2	0-01		
PF		ECT : Kirby Road Class EA	Study	io						Project I	No. 26130
ST	TAR1	TED : July 14, 2020	, Ontar	10						SHEET	1 OF 1
CC	OMP	PLETED : July 14, 2020				1	N 4	860 322.3 E 616 958.3		DATUM	Geodetic
щ	QO	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - Q - X	_ <u>0</u>	
DEPTH SCAI (metres)	BORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 160 40 80 120 160 1 1 1 1 WATER CONTENT, PERCENT wp 0 0 30 40 10 20 30 40 40 40 40 40	ADDITIONA LAB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
_		GROUND SURFACE		271.44							
		ASPHALT (100mm) SAND and GRAVEL, trace to some silt, brown, moist: (FILL)		0.10 270.68							Flushmount Well Protector Set in Concrete
- 1 -		CLAY, sitty, some sand, trace gravel, stift to hard, brown: (TILL)		0.76	1	ss	14		0		Bentonite
- -2	gers				2	ss	15		0		
- 3	Hollow Stem Aug		10/0/		3	ss	34	Grain Size Analysis:	0		Filter Sand
-		SAND, trace silt, trace clay, trace gravel, dense, brown, moist		268.04 3.40	4	ss	31	Gr 2%/ Sa 36%/ Si 46%/ Cl 16% Grain Size Analysis: Gr 0%/ Sa 92%/ Si & Cl 8%	ф О		
-4		CLAY, sitty, some sand, trace gravel, hard brown: (TILL)		267.33 4.11							Screen
- 5		END OF BOREHOLE AT 5.18m.		266.26 5.18	5	ss	42		Φ		
- - - - -		S0mm diameter Schedule 40 PVC pipe wi a 1.52m slotted screen. wATER LEVEL READINGS: DATE DEPTH(m) Jul 21/20 2.73 268.71 Jul 28/20 2.68 268.76 Sep 25/20 3.11 268.33	h								
- 7											
-8											
L.GPJ 11/13/20											
30-TE											
S 261	1	GROUNDWATER EL	EVAT	TIONS	ــــــ ک	<u> </u>	<u> </u>	l			
THURBER2		abla water level upon (COMPL	ETION		<u> </u>	L v s	VATER LEVEL IN WELL/PIEZC eptember 25, 2020	DMETER LOGGED : RB CHECKED : KF		THURBER

			F	REC	O	RD) (OF BOREHOLE 2	20-	02					
PF	ROJEC	T : Kirby Road Class EA St	udy										F	roject N	lo. 26130
LC		DN : Kirby Road, Vaughan, C	Ontai	rio											
	OMPLE	ETED : July 13, 2020				1	N 4	860 411.5 E 617 250.0					5	DATUM	Geodetic
-		SOIL PROFILE			S۵	MPI	FS		Т	SHEAR		TH: Cu, K	(Pa		
DEPTH SCALE (metres)	ORING METHO	DESCRIPTION	RATA PLOT	ELEV. DEPTH (m)	NUMBER	Түре	LOWS/0.3m		-	nat V rem V 40 WATER (wp		Q - 2 Cpen 2 120 1 I, PERCI	160 L ENT wl	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	ă		ST	070 77			B		_	10	20	30	40	$\left \right $	
-		ASPHALT (100mm)		273.77											
- - -		SAND and GRAVEL, trace to some silt, very dense, brown, moist: (FILL)		0.10	1	GS			0						
- 1 - -	jers	SAND silly trace gravel compact brown		272.32	2	ss	57		0						
-2	Ilow Stem Aug	moist		271.56	3	ss	15			0					
-	우	CLAY, silty, trace sand, trace gravel, firm, brown; with partings of silt		2.21	4	ss	7			0					
- 3				070.11	5	ss	6			0					
- -4 -		END OF BOREHOLE AT 3.66m BOREHOLE OPEN AND DRY UPON COMPLETION, BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG, ASPHALT AT SURFACE.	<i>X/V</i>	3.66											
- 5 - -															
- -6 -															
- 7															
-8															
-															
-9															
		GROUNDWATER ELE	VA ⁻ MPL		S I	<u> </u>	- v	ATER LEVEL IN WELL/PIEZO	OME	TER	LOGGE	ED : KED :	RB KF		THURBER

			F	REC	O	RE) (OF BOREHOLE	20-03		
PR	OJEC	T : Kirby Road Class EA S	tudy							Project I	No. 26130
LO	CATIC	N : Kirby Road, Vaughan, C	Onta	rio						011007	
ST	ARTE MPI F	U : July 13, 2020				ľ	N 4	860 523 5 F 617 584 1		SHEET	1 UF 1 Geodetic
					<u>s</u> ^		Fe		SHEAR STRENGTH: Cu, KPa		
DEPTH SCALE (metres)	BORING METHOR	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	nat V - ♥ Q - X rem V - ♥ Cpen ▲ 40 80 120 160 H H H WATER CONTENT, PERCENT wp	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_		GROUND SURFACE	0,7	272.72							
-		ASPHALT (100mm) GRAVEL, sandy to SAND, gravelly, dense to compact, brown, moist: (FILL)		0.10	1	GS		Grain Size Analysis: Gr 29%/Sa 57%/ Si & Cl 14%	0		Flushmount Vell Well Protectors Set in Concrete Bentonite
- 1 - 1					2	ss	50		0 0		Filter Sand
-2		ORGANIC SILT, some clay to clayey,		270.72 2.00	3	ss	16		0		
		CLAY, sitty, some sand, trace gravel, firm to hard, brown: (TILL)		2.21	4	ss	7		o		Slotted
-3	ø				5	ss	21		0		
4	Hollow Stem Auger		9/0/0/								
- - 5 -					6	ss	38		0		⊥ Deep
- - -6		SILT and SAND, trace clay, dense, brown, wet	Ó	267.08 5.64							Filter Sand
• • •					7	ss	35	Grain Size Analysis: Gr 0%/ Sa 55%/ Si 43%/ Cl 2%	0		
- 7 - -		CLAY, silty, trace sand, trace gravel, firm, brown to grey; with partings of silt		265.56 7.16							Screen
-8				264.49	8	ss	7		0		-
- 9		END OF BOREHOLE AT 8.23m. Monitoring Well installation consists of 50mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen. WATER LEVEL READINGS (DEEP WELL): DATE DEPTH(m) ELEV.(m) Jul 21/2020 4.37 268.35 Sep 25/2020 5.03 267.69 WATER LEVEL READINGS (SHALLOW WELL): DATE DEPTH(m) ELEV.(m) Jul 21/2020 DRY - Jul 28/2020 DRY - Jul 28/2020 DRY - Jul 28/2020 DRY -		8.23							
		GROUNDWATER ELE	VA'	TIONS	3				, , , <u>, , , , , , , , , , , , , , , , </u>		
		$\overline{ au}$ water level upon CC	MPL	LETION		<u> </u>	Z w s	ATER LEVEL IN WELL/PIE	ZOMETER LOGGED : RB CHECKED : KF		THURBER

				REC	O	RC) (OF BOREHOLE 2	20-0	4					
PF	ROJEC	CT : Kirby Road Class EA S	Study										Р	roject N	lo. 26130
	DCATI	ON : Kirby Road, Vaughan,	Onta	rio									s	HEET 1	OF 1
C	OMPL	ETED : July 13, 2020				I	۷4	860 613.3 E 617 876.3					D	ATUM	Geodetic
ш	Q	SOIL PROFILE			SA	MPL	.ES	COMMENTS		SHEAR S nat V -		FH: Cu, K Q - 🕽	Pa C	. 0	
DEPTH SCAL (metres)	DRING METH	DESCRIPTION	RATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	-OWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT		rem V - 40 VATER C wp I	. • 80 1 	Cpen 4 120 1 1, PERCE	60 :NT vl	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	M		ST	(11)			BL			10	20 :	30 4	10		
-		ASPHALT (100mm)	- 🗙	2/7.43	_										
-		SAND and GRAVEL, trace to some slit, brown, moist: (FILL)			1	GS			0						
- - 1				276.24	2	ss	28		0						
	gers	TOPSOIL (300mm)		1.19 275.91						0					
- 2	/ Stem Au	CLAY, silty, some sand, trace gravel, firm to very stiff, brown; with partings of silt		1.52	3	ss	6			0					
	Hollow														
-					4	SS	11			0					
- 3					5	ss	19								
ļ				273.77						Ī					
-4		END OF BOREHOLE AT 3.66m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKELLED WITH		3.66											
		BENTONITE HOLEPLUG, ASPHALT AT SURFACE.													
- 5															
-6															
-															
- 7															
-															
-8															
- 9															
			EVA	TIONS	5		7								
		WATER LEVEL UPON CO		LETION	I	_ <u>_</u>	- V	ATER LEVEL IN WELL/PIEZ	JMETI	-R	LOGGE	ED :	RB KF		THURBER

				F	REC	0	RD) (F BOREHOLE	20-05		
P	ROJ	ECT	: Kirby Road Class EA S	Study	rio						Project I	No. 26130
S.	TAR	TED	: Nirby Road, Vaughan, : July 8, 2020	Untai	10						SHEET	1 OF 4
С	OMF	PLETED	July 9, 2020				١	۷4	360 827.1 E 618 486.5		DATUM	Geodetic
Щ			SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - X rem V - ♥ Cpen ▲	AG VG	
DEPTH SCA (metres)	BOBING MET		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 160 WATER CONTENT, PERCENT wp	ADDITION/ LAB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
		GROL	UND SURFACE		290.97							
		SILT, brown	; with partings of silty clay		0.15	1	SS	8		0		Flushmount Well Protector Set in Concrete
- 1	ר Augers					2	SS	10		0		
- - -2	Hollow Sten					3	ss	7		0		
						4	ss	4		0		
- 3	-	SAND brown	i, some gravel, trace silt, loose, , moist to wet	/	288.00 2.97	5	ss	9		0		-
-4		CLAY gravel	, silty, some sand to sandy, trace , stiff to very stiff, grey: (TILL)		286.86 4.11							
- - 5 -				0		6	ss	14		0		
- - -6	tary/Tricone			8/2/0/								
	Mud Ro					7	SS	10		0		
-8				10		8	ss	23		0		
9		SILT a very d	and SAND , trace to some gravel, ense, grey, moist: (TILL)	0	282.29 8.69							
130- IEL.GPJ				0		9	ss	101		0		
URBERZS 26		(GROUNDWATER ELE	EVA OMPL		5	Ţ	- W	ATER LEVEL IN WELL/PIEZ	OMETER LOGGED : RB	•	
									•			INUKBEK

			F	REC	O	RC) C	OF BOREHOLE 2	20-0	5					
PF	ROJEC	CT : Kirby Road Class EA S	Study Ontai	rio									Project I	No. 26130	
ST	ARTE	D : July 8, 2020	Ontai										SHEET	2 OF 4	
CC	OMPLE	ETED : July 9, 2020				1	N 4 8	360 827.1 E 618 486.5			TRENOT		DATUM	Geodetic	
ЧГE	ДОН	SOIL PROFILE			SA	MPL	ES	COMMENTS	- s	nat V - rem V -	IRENGI	H: Cu, KPa Q - X Cpen ▲	RG₽	DIEZOMETED	
H SC/ letres)	G MET		PLO1	ELEV.	BER	щ	;/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT			30 1		ITION,	OR STANDPIPE	
DEPT (m	ORING	DESCRIPTION	RATA	DEPTH	NUME	TYF	LOWS		vv v				ADDI LAB.	INSTALLATION	1
	M N		ST	(11)	-		B				20 3	30 40			
			o												
-															
ŀ				· · ·											
- 11			4	2	10	ss	68			0					
			0	• • •											
Ì			d												
-		SILT and SAND, trace to some clay, trace		279.27											
-12		g.a.o., voly asilos, groy, not													
Į.											\$				
ŀ					11	SS	73			0					
- 13				•										Bentonite	
														Donitorinto	
-		CLAY, silty, some sand to sandy, trace		13.40											
-14				2	12	ss	58			þ					
Į.															
	cone		0												
1	ary/Tri														
- 15	d Rota			, ,											
ł	Mu				40	00	04								
					13	55	01			Ű					
-16			0												
ł		SILT clovey trace gravel year stiff gray		274.67											
Į.		with partings of silty clay		10.51											
-															
- 17					14	ss	81			0					
-				1											
-			H												
-18				1											
ł															
İ					15	ss	27			0					
ļ				1						-					
- 19			H												
				1											
			H												
			H												
1			EVA	TIONS	3	_	,								
		── WATER LEVEL UPON CO	OMPL	ETION	I	1	- W	ATER LEVEL IN WELL/PIEZC	OMETE	R	LOGGE	D:RB			
Ē							00				CHECK	LU. KF		THURB	ER

PI	ROJEC	CT : Kirby Road Class EA	Г Study	KEU	U	RL		DF BOREHULE 2	0-05	Project N	o. 26130
L(S ⁻ C	DCATI FARTE	ON : Kirby Road, Vaughan, D : July 8, 2020	Ontar	rio		ı	N 4	860 827 1 F 618 486 5		SHEET 3	OF 4 Geodetic
					SA	MDI	FS		SHEAR STRENGTH: Cu, KPa		
DEPTH SCALE (metres)	BORING METHOI	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	nat V - ♥ Q - X rem V - ♥ Cpen ▲ 40 80 120 160 WATER CONTENT, PERCENT wp	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- 21 - 21 - 22 - 23 - 23 - 23 - 23 - 23 - 23 - 24 - 25 - 27 - 27 - 27 - 28 - 27 - 28 - 27 - 28 - 27 - 28 - 27 - 28	Mud Rotary/Tricone	SAND, silty, dense, grey, wet SILT, clayey, some gravel, very soft to stiff, grey		266.38 24.60 263.37 27.60	16	SS SS SS SS	20	Grain Size Analysis: Gr 0%/ Sa 73%/ Si 24%/ Cl 3%			Filter Sand
-		GROUNDWATER EL	EVA		 6 1		v s	ATER LEVEL IN WELL/PIEZC	METER LOGGED : RB		

PRICET Kithy Road (Less EA Study) Prigot No. 261 LOCATION Kithy Road (Less EA Study) SHERT 64 + 1 SHER				F	REC	O	RE)	OF BOREHOLE	20-05		
and the second secon	PRO		T : Kirby Road Class EA S	itudy Ontar	io						Project N	lo. 26130
COMPLEID SUBJECT N4 900 62/1 COMPLEX SubJECT Decision of the second s	STA		D : July 8, 2020	ontai							SHEET 4	OF 4
Note for the Let Owner Loc Owner Loc Owner Loc Note for the Let Note	COM		TED : July 9, 2020			S V		N 4	260 827.1 E 618 486.5	SHEAR STRENGTH: Cu, KPa		Geodetic
B E (m) L at 20 0	DEPTH SCALE (metres)	RING METHO	DESCRIPTION	RATA PLOT	ELEV.		TYPE	OWS/0.3m		nat V • ● Q • ▲ rem V • ● Cpen ▲ 40 80 120 160 L U H WATER CONTENT, PERCENT wp I ─ O ^W I wl	ADDITIONAL AB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
31				STF	(m)	-		В	20 40 60 80 100	10 20 30 40		
31 Image: Constraint of the state of the	-											
31 END OF BORENCIE AT 31 08m. 32 END OF BORENCIE AT 31 08m. 33 IND OF BORENCIE AT 31 08m. 34 IND OF BORENCIE AT 31 08m. 35 IND OF BORENCIE AT 31 08m. 34 IND OF BORENCIE AT 31 08m. 35 IND OF BORENCIE AT 31 08m. 36 IND OF BORENCIE AT 31 08m. 37 IND OF BORENCIE AT 31 08m. 38 IND OF BORENCIE AT 31 08m. 36 IND OF BORENCIE AT 31 08m. 37 IND OF BORENCIE AT 31 08m. 38 IND OF BORENCIE AT 31 08m. 39 IND OF BORENCIE AT 31 08m. 30 IND OF BORENCIE AT 31 08m. 31 IND OF BORENCIE AT 31 08m. 33 IND OF BORENCIE AT 31 08m. 34 IND OF BORENCIE AT 31 08m. 35 IND OF BORENCIE AT 31 08m. 36 IND OF BORENCIE AT 31 08m. 37 IND OF BORENCIE AT 31 08m. 38 IND OF BORENCIE AT 31 08m. 39 IND OF BORENCIE AT 31 08m. 30 IND OF BORENCIE AT 31 08m. 31 IND OF BORENCIE AT 31 08m. 33 IND OF BORENCIE AT 31 08m												
-32 All OF BUSING ADE AN AN UNIT OF CONTROL OF C	- 31				259.88	20	SS	14				
-32 WATER-LEE-DEPONDOC DEPOND -33 -36 -33 -37 -38 -38 -39 -39 -39 -39 -31 -31	-		END OF BOREHOLE A1 31.09m. Monitoring Well installation consists of 50mm diameter Schedule 40 PVC pipe with a 3.05m slotted screen.		31.09							
	-		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m)									
	-32		Jul 21/20 26.63 264.34 Aug 28/20 26.59 264.38 Sep 25/20 26.75 264.22									
	-											
	- 33											
	-											
	-34											
	- 34											
	- 35											
	-36											
	- 37 -											
	-											
	-38											
	- 39											
						Ĺ						
GROUNDWATER ELEVATIONS WATER LEVEL UPON COMPLETION WATER LEVEL IN WELL/PIEZOMETER LOGGED : RB September 25, 2020 CHECKED : KF			GROUNDWATER ELE \overline{Y} water level upon CC	2VA DMPL	LIONS .ETION	S I	1	L w	/ATER LEVEL IN WELL/PIEZ eptember 25, 2020	OMETER LOGGED : RB CHECKED : KF		

Product In River, Road Class EA Study Program 2013 LODATION Staffeld Staf				F	REC	0	RD) (OF BOREHOLE 2	20-06		
LDLATE EX.NUE Statution SHETTOR SHETTOR <t< td=""><td>PF</td><td>ROJEC</td><td>CT : Kirby Road Class EA S</td><td>Study</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Project I</td><td>No. 26130</td></t<>	PF	ROJEC	CT : Kirby Road Class EA S	Study							Project I	No. 26130
COMPLETE 1 JUI 10.2020 NAME AS 000 BLE 16 18 23.0 DOTUM Consoling 1 0 001 FROMLE SAMPLES COMMENTS 001 FROMLE SAMPLES COMMENTS 001 FROMLE SAMPLES SAMP	ST	TARTE	ED : July 10. 2020	Ontar	rio						SHEET	1 OF 2
UND 05 05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CC	OMPLI	ETED : July 10, 2020				1	N 4	860 808.8 E 618 523.6		DATUM	Geodetic
Org Obs DESCRIPTION Org Encode Participation Paritipation <td>щ</td> <td>DO</td> <td>SOIL PROFILE</td> <td></td> <td></td> <td>SA</td> <td>MPL</td> <td>ES</td> <td>COMMENTS</td> <td>SHEAR STRENGTH: Cu, KPa nat V - • Q - ¥</td> <td>ں _ا</td> <td></td>	щ	DO	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - • Q - ¥	ں _ا	
Image: constraint of gene is the symptomic field with the symptom of digner is classive. Image: constraint of gene is classive. Image: constr	DEPTH SCAL (metres)	BORING METH	DESCRIPTION	TRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V ⋅ ● Cpen ▲ 40 80 120 160 1 1 1 1 WATER CONTENT, PERCENT wp → ₩ 10 20 30 40	ADDITIONAL LAB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
-1 But Laws one and the proof. -2 But Laws one and the proof. -3 But Laws one and the proof. -4 But Laws one and the proof. -5 But Laws one and the proof. -6 But Laws one and the proof. -7 But Laws one and the proof. -6 Cars one and the proof. -7 But Laws one and the proof. -7 But Laws one and the proof. -8 Cars one and the proof. -9 But Deproof to the proof. -9 But Deproof to the proof. -9 But Deproof. -			GROUND SURFACE	0	291.49							
1 Image: Second Se	-		SILT, clayey, some sand, trace gravel, stiff, brown; occasional organic inclusions: (FILL)		0.00	1	ss	11		0		Flushmount Well Protector Set in Concrete
-2 Image: the book water is and mark, particip of ally day Image: the book water is and mark, particip of all day Image: the book water is and mark, particip of all day Image: the book water is and mark, particip of all day Image: the book water is and mark, particip of all day Image: the book water is and mark, particip of all day Image: the book water is and mark, particip of all day Image: the book water is and mark, partis and mark, partis and day Ima	- - 1 -					2	ss	8		0		-
3 Image: state of the s	-2		SILT, clayey, trace to some sand, firm to stiff, brown, with occasional sand seams, partings of silty clay		290.05 1.45	3	ss	6		0		
3 -4 -5 -5 -5 -5 -5 -5 -7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>4</td><td>ss</td><td>5</td><td></td><td>0</td><td></td><td>Bentonite</td></td<>						4	ss	5		0		Bentonite
-4 BAND, trace sit, compact, brown, wet; 286.62 8 SS 17 -5 SAND, trace sit, compact, brown, wet; 286.62 8 SS 17 -6 -7 <t< td=""><td>- 3</td><td></td><td></td><td></td><td></td><td>5</td><td>ss</td><td>11</td><td></td><td></td><td></td><td>-</td></t<>	- 3					5	ss	11				-
-5 \$\vertic{1}{2}\$ \$\vertic{1}{	- - -4 -	Stem Augers										<u> </u>
6 0 0 0 0 Sorted 7 0 0 0 0 0 0 Sorted 7 0 0 0 0 0 0 0 0 Sorted 7 0	- - 5 - -	Hollow	SAND, trace silt, compact, brown, wet; with layers of clayey silt		286.62 4.88	6	SS	17				Filter Sand
7 CLAY, silty, some sand to sandy, trace 284.33 7.16 0 7 GRAY, silty, some sand to sandy, trace 7.16 0 0 -8 8 SS 25 0 0 0 -9 END OF BOREHOLE AT 9.45m. Montoring Weil installation consists of 50mm diameter Schedule 40 PVC pipe with a 1.52m soluted screen. 9 9 9.45 0 0 GROUNDWATER ELEVATIONS V WATER LEVEL UPON COMPLETION V WATER LEVEL IN WELL/PIEZOMETER LOGGED RB	-6 - -					7	SS	19	Grain Size Analysis: Gr 6%/ Sa 86%/ Si & Cl 8%	0		Slotted Screen
-8 8 SS 25 -9 8 SS 25 -9 9 SS 72/ 9.45 -9 8 SS 72/ 9.45 -9 SS 72/ 9.45 9 -9 SS 72/ 9.45 10 -9 SS 72/ 9.45 10 -9	- 7		CLAY , silty, some sand to sandy, trace gravel, very stiff to hard, grey: (TILL)		284.33 7.16							
9 END OF BOREHOLE AT 9.45m. Monitoring Well installation consists of 50mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen. WATER LEVEL UPON COMPLETION WATER LEVEL IN WELL/PIEZOMETER LOGGED = BB	- -8 -					8	ss	25		0		-
END OF BOREHOLE AT 9.45m. Monitoring Well installation consists of 50mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen. GROUNDWATER ELEVATIONS ↓ WATER LEVEL UPON COMPLETION ↓ WATER LEVEL IN WELL/PIEZOMETER LOGGED TO BB	- 9 -			8/0/0	282.04	9	ss	72/				-
			END OF BOREHOLE AT 9.45m. Monitoring Well installation consists of 50mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen.		9.45			u.213				
September 25, 2020 CHECKED : KF T		. 1		VA DMPL			<u> </u>	v s	ATER LEVEL IN WELL/PIEZO	DMETER LOGGED : RB CHECKED : KF		

			RE	CC	R) (OF BOREHOLE 2	20-06		
PI	ROJEC	T : Kirby Road Class EA S	Study						Project N	lo. 26130
S ⁻	TARTE	D : July 10, 2020	Ontano						SHEET 2	2 OF 2
C	OMPLE	TED : July 10, 2020				N 4	860 808.8 E 618 523.6	1	DATUM	Geodetic
ALE	DOH	SOIL PROFILE	1 - 1	5	AMP	LES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - ¥ rem V - ♥ Cpen ▲	RGAL	
DEPTH SC/ (metres)	RING MET	DESCRIPTION	ATA PLO	EV.	TYPE	OWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 160	ADDITION AB. TESTI	OR STANDPIPE INSTALLATION
			STF (u	1) 4	-	BL	20 40 60 80 100			
		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m)								
-		Jul 21/20 3.73 287.76 Jul 28/20 3.77 287.72								
ŀ		Sep 25/20 3.97 287.52								
- 11										
-										
-12	2									
- 13										
-										
-14										
-										
- 15										
- 15										
-										
-16										
-										
ŀ										
- 17										
-										
-18										
ŀ										
3/20 - 19										
11/										
TEL.GF										
6130-1										
R2S 2			EVATIO	NS		-				
URBE		✓ WATER LEVEL UPON CO	OMPLETI	ON	_	¥– W S	ATER LEVEL IN WELL/PIEZ	DMETER LOGGED : RB		
₽ 	September 25, 2020 CHECKED : KF THURBER									

				F	REC	O	RD) (OF BOREHOLE 2	20-07		
	PR		T : Kirby Road Class EA S	tudy	rio						Project I	No. 26130
	ST/		D : July 13, 2020	Untar	10						SHEET	1 OF 1
	со	MPLE	TED : July 13, 2020				I	N 4	860 884.1 E 618 707.8		DATUM	Geodetic
Щ		Ę	SOIL PROFILE	_		SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - Q - X rem V - Cpen	μĻ	
DEPTH SCA	(metres)	BORING METI	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	40 80 120 160 4 40 80 120 160 4 4 WATER CONTENT, PERCENT WP	ADDITIONA LAB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
_					298.20							
			SAND and GRAVEL to SAND, gravely, trace to some silt, brown, moist (FILL)		0.15	1	GS		Grain Size Analysis: Gr 29%/Sa 50%/ Si & Cl 21%	0		Flushmount Well Protector Set in Concrete Bentonite
- - 1 -			CLAY, silty, sandy, trace gravel, stiff to firm, grey: (TILL)	0	0.76	2	ss	15	Grain Size Analysis: Gr 2%/ Sa 33%/ Si 45%/ Cl 20%	о <u>—</u> н		Filter Sand
-2		SIS	SILT and SAND, trace to some clay, very		296.10 2.10	3	ss	6		0		
- 3		Hollow Stem Auge	loose, brown, moist		295.23	4	ss	3	Grain Size Analysis: Gr 0%/ Sa 39%/ Si 55%/ Cl 6%	на		Slotted
		-	GLAY, slift, some sand to sandy, trace gravel, stiff to very stiff, grey: (TILL)	× / O	2.97	5	ss	20		0		Screen
-4 - -												
- 5 -			END OF BOREHOLE AT 5.18m.	0	293.02 5.18	6	ss	13		0		
- - - - - - -			Monitoring Well installation consists of 50mm diameter Schedule 40 PVC pipe with a 3.05m slotted screen. WATER LEVEL READINGS: DATE DEPTH(m) Jul 21/20 2.25 295.95 Aug 28/20 2.22 295.64									-
- 7												
- -8 -												-
0-TEL.GPJ 11/13/20												
3 261:			GROUNDWATER ELE	VA	i Tions	ــــــ ک	I	I	I			
THURBER26			abla water level upon CC	OMPL	ETION		1	V <u>J</u>	VATER LEVEL IN WELL/PIEZO Jy 21, 2020	DMETER LOGGED : RB CHECKED : KF		THURBER

			F	REC	O	RE) (OF BOREHOLE	20-08		
PR		T : Kirby Road Class EA S	tudy	ria						Project N	lo. 26130
LO	ARTE	DN : Kirby Road, Vaugnan, (D : July 14, 2020	Onta	rio						SHEET 1	OF 1
СС	MPLE	TED : July 14, 2020				1	N 4	861 038.5 E 619 130.8		DATUM	Geodetic
щ	дон	SOIL PROFILE			SA	MPL	.ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - Q - X	_ U	
DEPTH SCAI (metres)	BORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 160 40 80 120 160 1 1 1 1 WATER CONTENT, PERCENT wp 0 0 10 10 20 30 40 1	ADDITIONA LAB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
_		GROUND SURFACE		308.35							
		SAND and GRAVEL to GRAVEL, sandy, trace to some silt, brown, moist: (FILL)		0.15	1	GS		Grain Size Analysis: Gr 47%/Sa 33%/ Si & Cl 20%	0		
- 1		CLAY, silty, some sand, trace gravel, stiff, grey: (TILL)	× ×	307.59 0.76	2	ss	10		o		
- -2			0		3	ss	10		0		
-			A D		4	ss	11		0		
- 3			0	304.70	5	ss	9		0		
- 4 - -		END OF BOREHOLE AT 3.66m BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG, ASPHALT AT SURFACE.		3.66							
- - 5 -											
- -6 -											
- - 7 -											
-8											
8/20 											
0-TEL.GPJ 11/15											
2613			Ι 		Ļ						
THURBER2S			DMPI	LETION		1	<u>v</u>	/ATER LEVEL IN WELL/PIEZ	OMETER LOGGED : RB CHECKED : KF		THURBER

				REC	O	RE) (OF BOREHOLE 2	20-09			
PR	OJEC	CT : Kirby Road Class EA S	Study Onto	rio						Proje	ect N	lo. 26130
ST	ARTE	ED : July 15, 2020	Unta	rio			N 4	961 144 2 E 610 419 4		SHE	ET 1	I OF 1
					<u> </u>			COMMENTS	SHEAR STRENGTH: Cu, KPa			Geodelic
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	nat V · ● CPen ▲ rem V · ● Cpen ▲ 40 80 120 160 UNATER CONTENT, PERCENT wp I ─ ─ ─ ─ ─ ─ W wl 10 20 30 40	ADDITIONAL	LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_		GROUND SURFACE		310.70								
- -		SAND and GRAVEL, trace to some silt, brown, moist: (FILL)		0.13	1	GS						Flushmount F F F Well Protector Set in Concrete Bentonite
- - 1 -		CLAY, silty, some sand, trace gravel, stiff to firm, grey: (FILL)		0.76	2	ss	12		0			Filter Sand
-2					3	ss	7		0			Deep Shallow
- -		ORGANIC SILT, clayey, soft, black; with occasional inclusions of peat SILT, sandy, trace gravel, loose, grey, moist occasional organics		308.49 2.21 308.10 2.59	4	ss	4		0	670		Slotted Screen
- 3	/ Stem Augers	CLAY, sity, some sand to sandy, trace gravel, occasional cobbles, firm to very stiff, brown to grey: (TILL)	8	307.72 2.97	5	ss	9		0			.Ħ.
-4	Hollow		0/0/0/									Filter Sand
- 5			9/0/0/		6	ss	11	Grain Size Analysis: Gr 2%/ Sa 26%/ Si 49%/ Cl 23%	œ1			Slotted
-6			0									Screen
- -			0	303.99	7	ss	16		0			
- 7		Monitoring Well installation consists of 50mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen. WATER LEVEL READINGS (DEEP WELL): DATE DEPTH(m) ELEV.(m) Jul 21/2020 2.56 308.14 Jul 28/2020 1.64 309.06 Sep 26/2020 1.87 308.83										
-8		WATER LEVEL READINGS (SHALLOW WELL): DEPTH(m) ELEV.(m) Jul 21/2020 1.88 308.82 Jul 28/2020 1.70 309.00 Sep 25/2020 1.90 308.80										
- 9												
-					Ĺ							
		GROUNDWATER ELE $\overline{\Sigma}$ water level upon C	EVA	LETION		1	- v s	VATER LEVEL IN WELL/PIEZC eptember 25, 2020	DMETER LOGGED : RB CHECKED : KF			

				REC	O	RC	\mathbf{C}	OF BOREHOLE 2	20-10			
PR	ROJEC	T : Kirby Road Class EA S	tudy							Project I	No. 26130	
LO		DN : Kirby Road, Vaughan, (Onta	rio						QUEET		
CC	OMPLE	TED : July 15, 2020				I	۷4	861 284.5 E 619 860.3		DATUM	Geodetic	
щ	ПОР	SOIL PROFILE			SA	MPL	.ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - Q - X	<u>ں</u>		
DEPTH SCAL (metres)	BORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V - ● Cpen ▲ 40 80 120 160 ↓ ↓ ↓ WATER CONTENT, PERCENT wp ↓ ─ ─ ₩ ↓ ↓ 10 20 30 40 ↓ ↓ ↓	ADDITIONAL LAB. TESTIN	PIEZOMETE OR STANDPIPE INSTALLATIC	R E DN
		GROUND SURFACE		291.73							Fluckmannt 1	ৰ ৰে
-		SAND and GRAVEL, trace to some silt, brown, moist: (FILL)		0.13							Flushmount Well Protector Set in Concrete Bentonite	2 2
- 1 - 1		CLAY, silty, some sand to sandy, trace gravel, stiff, brown: (TILL)	B/O/	0.76	1	ss	13		0		Filter Sand	
-2			0/0/	289.52	2	ss	11	Grain Size Analysis: Gr 3%/ Sa 27%/ Si 46%/ Cl 24%	Ð1		Slotted .	
		SILT, some clay to clayey, trace sand, firm to very stiff; with occasional partings to layers of silt and silty clay		2.21	3	ss	5		o			
- 3 - -					4	ss	21		0			
- -4 -											Filter Sand	
- 5 -					5	ss	14	Grain Size Analysis: Gr 0%/ Sa 3%/ Si 85%/ Cl 12%	10-1		Slotted Screen	
- - -6												
		END OF BOREHOLE AT 6.71m.		285.02	6	ss	18		0			
- 7		Monitoring Well installation consists of 50mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen. WATER LEVEL READINGS (DEEP WELL): DATE DEPTH(m) ELEV.(m) Jul 21/2020 DRY - Jul 28/2020 DRY - Sen 25/2020 DRY -										-
-8		WÅTER LEVEL READINGS (SHALLOW WELL): DATE DEPTH(m) ELEV.(m) Jul 21/2020 DRY - Jul 28/2020 DRY - Sep 25/2020 DRY -										- - -
- 9												-
	<u> </u>	GROUNDWATER ELE	VA MPI		3	<u> </u>	Z w	ATER LEVEL IN WELL/PIEZC	METER LOGGED : RB	I		
									GHLORED . RF		THUR	BEK

			F	KEC	O	RD	\mathbf{C}	OF BOREHOLE 2	20-11			
PF	PROJECT : Kirby Road Class EA Study Project No. 26130 LOCATION : Kirby Road, Vaughan, Ontario											
LC		ON : Kirby Road, Vaughan, (Ontar	io								05.4
C	OMPL	ED : July 15, 2020				١	N 4	861 403.7 E 620 200.5		DAT	UM	Geodetic
					64	MDI	 E9		SHEAR STRENGTH: Cu, KF	a		
DEPTH SCALE (metres)	BORING METHO	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	nat V - Cpen ▲ rem V - Cpen ▲ 40 80 120 16 ↓ ↓ WATER CONTENT, PERCEN wp → W 10 20 30 40	ADDITIONAL	LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
\vdash		GROUND SURFACE	0 O	282.86							+	
		ASPHALT (100mm)		0.10								
- - - 1 -		SAND and GRAVEL, trace to some slit: (FILL) SILT and SAND, trace to some clay, trace gravel, loose to compact, brown, moist	0									
- - -2	Hollow Stem Augers				2	ss	16		0			
- - - 3				279.81	3	ss	20		Φ			
		SILT, clayey, trace to some sand, firm, brown; with partings of silty clay		3.05 279.20	4	SS	7		0			
- 4 - -		END OF BOREHOLE AT 3,66m BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG, ASPHALT AT SURFACE.		3.66								
- 5	5											
- -6 -												
- 7	7											
- 8 - -	8											
90-1EL.GFJ 11/10/20	9											
	1	GROUNDWATER ELE	VA1	LIONS ETION	L		- w	ATER LEVEL IN WELL/PIEZO	DMETER LOGGED : F	RB KF		THURBER

PROJECT I. KIMUP Road Usase EA Budy Prove the 28130 CONNECTED J. Myl 14, 2020 SPEET OF 2 DATUM CONNECTED J. Myl 14, 2020 Mathematication Connected State				F	REC	0	RE) (OF BOREHOLE 2	20-12		
LLULAIN Kith Model, Vaughan, Johnson SHEET 10F 2 CORRECTED July 14, 2020 N 4 861 546.2 E 020 662.8 SHEET 10F 2 DUTUM Concern Solid PROFILE MARTLES COMMENTS SHEET 10F 2 Solid PROFILE Solid PROFILE MARTLES COMMENTS SHEET 10F 2 Solid PROFILE Solid PROFILE MARTLES COMMENTS SHEET 10F 2 Solid PROFILE Solid PROFILE MARTLES Comment Profile Profile SHEET 10F 2 Solid PROFILE Solid PROFILE Solid PROFILE Sheet 10F 2 Sheet 10F 2 Solid PROFILE Solid PROFILE Solid PROFILE Sheet 10F 2 Sheet 10F 2 Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE Solid PROFILE <td>PF</td> <td>ROJEC</td> <td>T : Kirby Road Class EA S</td> <td>Study</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Project I</td> <td>No. 26130</td>	PF	ROJEC	T : Kirby Road Class EA S	Study							Project I	No. 26130
UNITE: I. UNIT I. UNIT I. UNIT I. UNIT Delta 104 Delta 104 COMPLETE: I. UNIT Solid PROFILE MA 861 548 2 E 620 682.8 DELTA 047 Image: Solid PROFILE Solid PROFILE MARKES COMMENTS Image: Solid PROFILE Image: Solid PRO	LC		DN : Kirby Road, Vaughan,	Onta	rio						QUEET	1 OF 2
Under the second seco	CC	OMPLE	TED : July 14, 2020				I	N 4	861 548.2 E 620 682.8		DATUM	Geodetic
State DESCRIPTION Box En Bix En Description (Compared by Participation) Descriptic Parin (Compared by Participatio	щ	₫Ģ	SOIL PROFILE			SA	MPL	.ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - Q - X	ں ر	
Image: Set Toric School Incoment. 365 Out Toric School Incoment. Plantmark Image: Set Toric School Incoment. Set Toric School Incoment. Plantmark Plantmark Plantmark Image: Set Toric School Incoment. Set Toric School Incoment. Plantmark Plantmark Plantmark Plantmark Image: Set Toric School Incoment. Set Toric School Incoment. Plantmark Plantmark Plantmark Plantmark Image: Set Toric School Incoment. Set Toric School Incoment. Plantmark Plantmark Plantmark Plantmark Image: Set Toric School Incoment. Plantmark Plantmark Plantmark Plantmark Plantmark Image: Set Toric School Incoment. Plantmark Plantmark Plantmark Plantmark Image: Set Toric School Incoment. Plantmark Plantmark Plantmark Plantmark Image: Set Toric School Incoment. Plantmark Plantmark Plantmark Plantmark Image: Set Toric School Incoment. Plantmark Plantmark Plantmark Plantmark Image: Set Toric School Incoment. Plantmark Plant	DEPTH SCAL (metres)	- BORING METH		STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	1011 V - € Cpen A 40 80 120 160 1 120 160 120 160 WATER CONTENT, PERCENT wp - € w 10 10 20 30 40 1	ADDITIONAL LAB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
Image: State and GAMD, trace grand, loose to corre all. 1 6 1 6 1 6 1 6 1			GROUND SURFACE ASPHALT (30mm)	/ 🕅	295.59 0.03							
1 Image: Set of and Set of the grand, base to compact brown, model, (PLL) Image: Set of and Set of the set o	-		SAND and GRAVEL, trace to some silt, brown, moist: (FILL)		204.01	1	GS		Grain Size Analysis: Gr 45%/Sa 38%/ Si & Cl 17%	0		Flushmount Well Protector Set in Concrete
-2 -3 -4 -3 <td< td=""><td>- - 1</td><td></td><td>SILT and SAND, trace gravel, loose to compact, brown, moist: (FILL)</td><td></td><td>0.69</td><td>2</td><td>ss</td><td>15</td><td></td><td>0</td><td></td><td>Bentonite</td></td<>	- - 1		SILT and SAND, trace gravel, loose to compact, brown, moist: (FILL)		0.69	2	ss	15		0		Bentonite
-2 -3 -4 -4 -3 -5 -4 -4 -4 -5 -4 -5 -4 -6 -7 -7 -8 -7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Filter Sand</td></td<>												Filter Sand
3 A 8 12 0 0 0 4 5 5 9 0 0 0 5 0 0 0 0 0 0 6 0 0 0 0 0 0 7 8 8 8 41 0 0 7 0 0 0 0 0 0 7 8 5 1 0 0 0 8 8 5 1 0 0 0 7 8 5 1 0 0 0 8 8 5 1 0 0 0 9 0 0 0 0 0 0 9 0 0 0 0 0 0 9 0 0 0 0 0 0 9 0 0 0 0 0 0 9 0 0 0 0 0 0 9 0 0 0 0 0 0	-2					3	ss	28	Grain Size Analysis: Gr 1%/ Sa 37%/ Si 60%/ Cl 2%	ο		Slotted -
-4 -4 -5 -5 -5 -5 -5 -5 -6 -7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>4</td><td>ss</td><td>12</td><td></td><td>0</td><td></td><td></td></td<>						4	ss	12		0		
-4 -5 -5 -6 -7 -6 -6 -7 -6 -7 -6 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -8 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -7 -7 -8 -7 <td< td=""><td>- 3</td><td></td><td></td><td></td><td></td><td>5</td><td>ss</td><td>9</td><td></td><td>0</td><td></td><td>-</td></td<>	- 3					5	ss	9		0		-
-5 0	- -4 -		SILT and SAND, trace gravel, trace clay, compact to dense, brown, moist: (TILL)		291.48 4.11							-
6 6 7 S 26 0	- 5 -			0	· · · · · ·	6	SS	40		0		
7 0	- - -6			0	· · · · · ·							-
7 1 1 1 1 1 1 0	- -			. c 0	· · · ·	7	SS	26		0		
-8 8 SS 41 -9 SILT, trace sand and clay, loose to compact, brown, wet 8 SS 41 9 SILT, trace sand and clay, loose to 8.69 9 S 9 SILT, trace sand and clay, loose to 9 SS 5 Grain Size Analysis: Gr 0%/ Sa 3%/ Si 92%/ Cl 5% 0 Slotted Slotted Screen	- 7			. o . a								
9 SILT, trace sand and clay, loose to compact, brown, wet 1 286.91 8.69 1	-8			0		8	ss	41				
GROUNDWATER ELEVATIONS	9		SILT, trace sand and clay, loose to compact, brown, wet		286.91 8.69							Filter Sand
						9	SS	5	Grain Size Analysis: Gr 0%/ Sa 3%/ Si 92%/ Cl 5%	o		Slotted
						Ĺ						Screen
Image: Construction of the construc			GROUNDWATER ELE	EVA ⁻ Ompl		5	1	Z v A	VATER LEVEL IN WELL/PIEZO ugust 28, 2020	DMETER LOGGED : RB CHECKED : KF		THURBER

HOLCH THE KINF, Road Class EA Study Beget Me. 2013 STARTED THE VIEW ROAD Class FA Study Beget Me. 2013 STARTED THE VIEW ROAD Class FA Study Beget Me. 2013 STARTED THE VIEW ROAD Class FA Study Me. 2013 STARTED THE VIEW ROAD Class FA Study Me. 2013 STARTED THE VIEW ROAD Class FA Study Me. 2013 Starten DT Market Starten The VIEW ROAD Class FA Study THE OFFICE AT THE VIEW ROAD CLASS FARMET ROAD CLASS FOR CLASS F				REC	O	RE) (OF BOREHOLE 2	20-12		
BYTER I: i. My 14 2020 IN 281 568.2 E 20 88.2 MCMC10 0000 0000 0000 0000 0000 0000 00	PR		T : Kirby Road Class EA S	itudy Optaria						Project N	lo. 26130
COMPLETED: July 14, 2020 M 4 69 1542.2 DUTUM Gendeling under the second s	ST	ARTE	D : July 14, 2020	Untano						SHEET 2	2 OF 2
B SOUL PEOPLE SAMPLES COMMENTS COMMENTS <th< td=""><td>cc</td><td>MPLE</td><td>TED : July 14, 2020</td><td></td><td></td><td>I</td><td>N 4</td><td>861 548.2 E 620 682.8</td><td></td><td>DATUM</td><td>Geodetic</td></th<>	cc	MPLE	TED : July 14, 2020			I	N 4	861 548.2 E 620 682.8		DATUM	Geodetic
Signal Description Signal S	ALE (THOD	SOIL PROFILE	1 - 1	SA	MPL	.ES	COMMENTS	nat V - ♥ Q - ¥ rem V - ♥ Cpen ▲	NG	
B B B C <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<>	TH SC netres	G ME		Old ELEV.	BER	Ы	S/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 160		OR
Image: Control of the second of th	DEP ⁻	BORIN	DESCRIPTION	DEPTH (m)	NUN	∣≿	BLOW	20 40 60 80 100	wp	ADC LAB.	INSTALLATION
11 10 35 11 11 10 35 11 12 10 10 10 13 10 10 10 13 35 20000 100 14 10 10 15 10 10 16 10 10 17 10 10 18 10 10 19 10 10 19 10 10 19 10 10 19 10 10 19 10 10 19 10 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 12 10 10 13 10 10 14 10 10 15 10 10 16 10 10 17 10 10 18 10 10 19 10 10 19 10 10				S S			ш				
11 1<	F										
11 10 93 11 11 Andrem Weither or excelled of memory and veloperation of thememory a											
11 10 58.11 12 12 12 12 13 12 12 12 14 12 12 12 13 12 12 12 14 12 12 12 15 12 12 12 14 12 12 12 15 13 12 12 16 14 14 14 17 14 14 14 16 14 14 14 17 14 14 14 18 14 14 14 19 15 14 14 19 15 14 14 19 15 14 14 14 19 14 14 14 14 19 15 14 14 14 19 14 14 14 14 19 14 14 14 14 19 14											
How of Property and allow of Society of Property and allow of Property and	- 11				10	SS	11		0		
12 Image: Structure			END OF BOREHOLE AT 11.28m.	284.31	-						
12 WATER LEVE BANNES (GEP 12 WATER LEVE BANNES (GEP 13 Sep 32020 13 Sep 32020 14 Sep 32020 15 Sep 32020 16 Sep 32020 19 Sep 32020 19 Sep 32020 19 WATER LEVEL UPON COMPLETION ¥ WATER LEVEL UPON COMPLETION			50mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen.								
Image: Section of the section of	-12		WATER LEVEL READINGS (DEEP WELL): DATE DEPTH(m) ELEV (m)								
Image: State of the state	-		Jul 21/2020 10.18 285.41 Jul 28/2020 10.14 285.45								
13 UNTER Sep 250020 DEPT (m) ELEV(m) 13 Sep 250020 DEPT (m) ELEV(m) 14 Image: Sep 250020 DEPT (m) ELEV(m) 14 Image: Sep 250020 DEPT (m) ELEV(m) 15 Image: Sep 250020 DEPT (m) ELEV(m) 16 Image: Sep 250020 DEPT (m) ELEV(m) 16 Image: Sep 250020 DEPT (m) Elev(m) 17 Image: Sep 250020 DEPT (m) Image: Sep 250020 DEPT (m) 18 Image: Sep 250020 DEPT (m) Image: Sep 250020 DEPT (m) 19 Image: Sep 250020 DEPT (m) Image: Sep 250020 DEPT (m) Image: Sep 250020 DEPT (m) Image: Sep 250020 DEPT (m) Image: Sep 250020 DEPT (m) 19 Image: Sep 250020 DEPT (m) Image: Sep 250020 DEPT (m) Image: Sep 250020 DEPT (m) 19 Image: Sep 250020 DEPT (m) Image: Sep 250020 DEPT (m) Image: Sep 250020 DEPT (m) 19 Image: Sep 250020 DEPT (m) Image: Sep 250020 DEPT (m) Image: Sep 250020 DEPT (m) 10 Image: Sep 250020 DEPT (m) Image: Sep 250020 DEPT (m) Image: Sep 250020 DEPT (m)			WATER LEVEL READINGS (SHALLOW WELL):								
13 Sep 20000 DRY . 14 . . 15 . . 16 . . 17 . . 18 . . VWATER LEVEL UPON COMPLETION YWATER LEVEL IN WELL/PIEZOMETER LOGGED : RB August 28, 2020 OHECKED : KF THURBEL			DATE DEPTH(m) ELEV.(m) Jul 21/2020 DRY - Jul 28/2020 DRY -								
CROUNDWATER ELEVATIONS	- 13		Sep 25/2020 DRY -								
-14 Image: Strate Level in Well/Piezometer Logged : RB -16 Image: Strate Level in Well/Piezometer Logged : RB -18 Image: Strate Level in Well/Piezometer Logged : RB Image: Strate Level in Well/Piezometer Kr Image: Strate Level in Well/Piezometer Kr											
14 Image: Second S	ľ										
15 16 16 17 18 19 19 SROUNDWATER ELEVATIONS ☑ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : RB OHEOKED : KF	-14										
15 Image: State of the	-										
15 GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL UPON COMPLETION											
15 Image: Second S	•										
-16 Image: Second	- 15										
-16 Image: Second											
-16 Image: Second state s											
-17 -17 -18 -18 -18 -18 -19 -19 SROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : RB August 28, 2020	-16										
17 Image: Second S	Ì										
17 I											
17 Image: Second S	_ 17										
-18 Image: Second state s	- ''										
-18 Image: Second	-										
-18 19 GROUNDWATER ELEVATIONS ↓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : RB August 28, 2020 CHECKED : KF											
19 GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : RB August 28, 2020	-18										
19 GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : RB August 28, 2020 CHECKED :											
19 Image: Second state st											
GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER August 28, 2020 CHECKED : KF THURBEN	- 19										
GROUNDWATER ELEVATIONS											
GROUNDWATER ELEVATIONS											
GROUNDWATER ELEVATIONS Vater Level Upon Completion August 28, 2020 GROUNDWATER Level IN WELL/PIEZOMETER CHECKED : RB CHECKED : KF THURBEN											
Vater Level Upon Completion Vater Level In Well/Piezometer Logged : RB August 28, 2020 CHECKED : KF THURBER			GROUNDWATER ELE	VATION	S	1	I				
August 28, 2020 CHECKED : KF THURBE			$\overline{\mathcal{Y}}$ water level upon CC	OMPLETION	1	7	Z w	ATER LEVEL IN WELL/PIEZO	METER LOGGED : RB		

			F	REC	O	RE) (OF BOREHOLE 2	0-13		
PF	PROJECT : Kirby Road Class EA Study Project No. 26130 LOCATION : Kirby Road, Vaughan, Ontario										
ST	CATIC FARTE	ED : July 14, 2020	Untar	10						SHEET 1	OF 1
C	OMPLE	ETED : July 14, 2020				I	N 4	860 225.8 E 616 744.8		DATUM	Geodetic
щ	ДŎ	SOIL PROFILE	_	-	SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - Q - Coon	ц	
DEPTH SCA (metres)	BORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	40 80 120 160 4 80 120 160 4 1 1 WATER CONTENT, PERCENT wp	ADDITIONA LAB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
_		GROUND SURFACE		268.83							
-		SAND and GRAVEL, trace to some silt, brown, moist: (FILL)		0.11 268.22	1	GS			0		
- - 1		CLAY, sitty, some sand to sandy, trace gravel, stiff, brown: (FILL)		0.61	2	SS	12		0		
-	m Augers	CLAY , silty, some sand, trace gravel, firm to very stiff, brown: (TILL)		267.38 1.45							
-2	Hollow Ste		0		3	SS	7		0		
-					4	SS	21	Grain Size Analysis: Gr 3%/ Sa 22%/ Si 54%/ Cl 21%	011		
- 3 - -					5	ss	23		0		
-4		END OF BOREHOLE AT 3.66m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG, ASPHALT AT SURFACE.	_#4.12	3.66							
- 5											
- -6											
- 7											
-8											
- 13/20 - 9											
TEL.GPJ 11.											
26130					Ĺ						
THURBER2S		GROUNDWATER ELE $\overline{\mathcal{Y}}$ water level upon co	DMPL	ETION	> I	7	<u> </u>	/ATER LEVEL IN WELL/PIEZC	DMETER LOGGED : RB CHECKED : KF		THURBER

Appendix C

Single Well Response Test Analyses

							Slug Te	st Analysis	s Report			
							Projec	t: Kirby	Road Cla	ss EA Stu	dy	
							Numbe	er: 26130)			
Ð	THURBEI	RENGI	NEERI	NG LTE).		Client:	HDR				
Location: \	Vaughan			Sluc	Test:	20-09))		Test V	Vell: 20-09	9D	
Test Cond	lucted by:	JZ/RB			,		-		Test	Date: 2020	-07-30	
Analysis P	erformed	by: AH		20-0	9D SV	NRT A	nalysis		Analys	sis Date: 2	2020-07-3	0
Aquifer Th	ickness:											
Checked b	by: DH											
	0 100	00 2	0000	30000	40	-	Fime [s]	60000	70000	80000	90000	100000
1E0-												
-		•										
-			_									
-			Contraction of the second									
-												
-												
e e							_					
· ۲			_									
-												
										•		
1E-1-				·		·	·	·	·	·		
Calculation	using Hvor	slev										
Observation	n Well	Hy	draulic	vitv								
		[m	/sl	ity								
20-000		21	$\frac{1}{2}$ × 10 ⁻⁸		_							
20-09D		2.	5 ~ 10									

Appendix D

Laboratory Certificates of Analysis

FINAL REPORT

CA15792-JUL20 R1

26130, Kirby Rd. EA

Prepared for

Thurber Engineering Ltd.

FINAL REPORT

First Page

CLIENT DETAILS		LABORATORY DETAIL	_S
Client	Thurber Engineering Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	103, 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7. Canada		
Contact	Rachel Bourassa	Telephone	705-652-2143
Telephone	905-829-8666 x 263	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	rbourassa@thurber.ca	SGS Reference	CA15792-JUL20
Project	26130, Kirby Rd. EA	Received	07/29/2020
Order Number		Approved	08/06/2020
Samples	Water (3)	Report Number	CA15792-JUL20 R1
		Date Reported	08/06/2020

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present:Yes Custody Seal Present:Yes

Chain of Custody Number:014090

Fluoride spike % recovery low, results accepted based on all other $\ensuremath{\mathsf{qc}}$

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-8
Exceedance Summary	9
QC Summary	10-18
Legend	19
Annexes	20

FINAL REPORT

CA15792-JUL20 R1

Client: Thurber Engineering Ltd.

Project: 26130, Kirby Rd. EA

Project Manager: Rachel Bourassa

Samplers: Rachel Bourassa

CA15792-JUL20 R1

Client: Thurber Engineering Ltd.

Project: 26130, Kirby Rd. EA

Project Manager: Rachel Bourassa

PACKAGE: SANSEW - Metals and	I Inorganics		Sa	mple Number	8	9	10
(WATER)							
· · ·			5	Sample Name	20-03D	20-06	20-09
L1 = SANSEW / WATER / Vaughan Sewer Use BvL	Law - Sanitary Sewer Discharge	e-BL 087 2016	s	Sample Matrix	Water	Water	Water
L2 = SANSEW / WATER / Vaughan Sewer Use ByL	Law - Storm Sewer Discharge -	BL 087 2016		Sample Date	29/07/2020	29/07/2020	29/07/2020
Parameter	Units	RL	L1	L2	Result	Result	Result
Metals and Inorganics (continued)							
Manganese (total)	mg/L	0.00001	5	0.15	0.157	0.642	2.91
Molybdenum (total)	mg/L	0.00004	5		0.00114	0.00437	0.00293
Nickel (total)	mg/L	0.0001	2	0.08	0.0026	0.0059	0.0109
Phosphorus (total)	mg/L	0.003	10	0.4	0.042	0.056	0.016
Selenium (total)	mg/L	0.00004	1	0.02	0.00014	0.00015	0.00030
Silver (total)	mg/L	0.00005	5	0.12	< 0.00005	< 0.00005	< 0.00005
Tin (total)	mg/L	0.00006	5		0.00025	0.00033	0.00084
Titanium (total)	mg/L	0.00005	5		0.0369	0.0473	0.00225
Zinc (total)	mg/L	0.002	2	0.04	0.003	0.006	0.006

CA15792-JUL20 R1

Client: Thurber Engineering Ltd.

Project: 26130, Kirby Rd. EA

Project Manager: Rachel Bourassa

PACKAGE: SANSI	EW - Nonylphenol and	Ethoxylates		Sa	mple Number	8	9	10
(WATER)								
				5	Sample Name	20-03D	20-06	20-09
L1 = SANSEW / WATER /	Vaughan Sewer Use ByLaw - San	itary Sewer Discharge	- BL_087_2016	s	Sample Matrix	Water	Water	Water
L2 = SANSEW / WATER /	Vaughan Sewer Use ByLaw - Stor	rm Sewer Discharge - E	BL_087_2016		Sample Date	29/07/2020	29/07/2020	29/07/2020
Parameter		Units	RL	L1	L2	Result	Result	Result
Nonylphenol and E	thoxylates							
Nonylphenol		mg/L	0.001	0.02		< 0.001	< 0.001	< 0.001
Nonylphenol Ethox	ylates	mg/L	0.01	0.2		< 0.01	< 0.01	< 0.01
Nonylphenol mono	ethoxylate	mg/L	0.01			< 0.01	< 0.01	< 0.01
Nonylphenol dietho	xylate	mg/L	0.01			< 0.01	< 0.01	< 0.01
PACKAGE: SANSI	EW - Oil and Grease (WATER)		Sa	mple Number	8	9	10
				5	Sample Name	20-03D	20-06	20-09
L1 = SANSEW / WATER /	Vaughan Sewer Use ByLaw - San	itary Sewer Discharge	- BL_087_2016	s	Sample Matrix	Water	Water	Water
L2 = SANSEW / WATER /	Vaughan Sewer Use ByLaw - Stor	rm Sewer Discharge - E	BL_087_2016		Sample Date	29/07/2020	29/07/2020	29/07/2020
Parameter		Units	RL	L1	L2	Result	Result	Result
Oil and Grease								
Oil & Grease (total)		mg/L	2			< 2	< 2	< 2
Oil & Grease (anim	al/vegetable)	mg/L	4	150		< 4	< 4	< 4
Oil & Grease (mine	ral/synthetic)	mg/L	4	15		< 4	< 4	< 4

CA15792-JUL20 R1

Client: Thurber Engineering Ltd.

Project: 26130, Kirby Rd. EA

Project Manager: Rachel Bourassa

PACKAGE: SANSEW - Other (ORP) (WA	ATER)		Sa	mple Number	8	9	10
			8	Sample Name	20-03D	20-06	20-09
L1 = SANSEW / WATER / Vaughan Sewer Use ByLaw - Sar	nitary Sewer Discharge	e - BL_087_2016	5	Sample Matrix	Water	Water	Water
L2 = SANSEW / WATER / Vaughan Sewer Use ByLaw - Sto	orm Sewer Discharge -	BL_087_2016		Sample Date	29/07/2020	29/07/2020	29/07/2020
Parameter	Units	RL	L1	L2	Result	Result	Result
Other (ORP)							
рН	No unit	0.05	10.5	9	7.45	7.42	6.65
Mercury (total)	mg/L	0.00001	0.01	0.0004	< 0.00001	< 0.00001	< 0.00001
			Sa	mple Number	8	9	10
PACRAGE. SANSEW - PCBS (WATER)				Sample Name	20.030	20.06	20.00
		DI 007	· · ·	Sample Matrix	Water	20-00 Water	20-0 3 Water
L1 = SANSEW / WATER / Vaughan Sewer Use ByLaw - San	nitary Sewer Discharge	e - BL_087_2016	· ·	Sample Date	29/07/2020	29/07/2020	29/07/2020
LZ = SANSEW / WATER / Vaughan Sewer Use ByLaw - Sto	rm Sewer Discharge -	BL_087_2016	11	12	Bogult	Bogult	Bogult
	Units		L 1	L£	Nosuit	Nesuit	Noguit
					< 0.0001	- 0.0001	< 0.0004
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001	0.001	0.0004	< 0.0001	< 0.0001	< 0.0001
PACKAGE: SANSEW - Phenols (WATE	R)		Sa	mple Number	8	9	10
			8	Sample Name	20-03D	20-06	20-09
L1 = SANSEW / WATER / Vaughan Sewer Use ByLaw - Sar	nitary Sewer Discharge	e - BL_087_2016	5	Sample Matrix	Water	Water	Water
L2 = SANSEW / WATER / Vaughan Sewer Use ByLaw - Sto	orm Sewer Discharge -	BL_087_2016		Sample Date	29/07/2020	29/07/2020	29/07/2020
Parameter	Units	RL	L1	L2	Result	Result	Result
Phenols							
4AAP-Phenolics	mg/L	0.002	1	0.008	0.003	0.003	0.004
				I			
PACKAGE: SANSEW - SVOCs (WATER	२)		Sa	mple Number	8	9	10
			:	Sample Name	20-03D	20-06	20-09
L1 = SANSEW / WATER / Vaughan Sewer Use ByLaw - Sar	nitary Sewer Discharge	e - BL_087_2016	\$	Sample Matrix	Water	Water	Water
L2 = SANSEW / WATER / Vaughan Sewer Use ByLaw - Sto	orm Sewer Discharge -	BL_087_2016		Sample Date	29/07/2020	29/07/2020	29/07/2020
Parameter	Units	RL	L1	L2	Result	Result	Result

CA15792-JUL20 R1

Client: Thurber Engineering Ltd.

Project: 26130, Kirby Rd. EA

Project Manager: Rachel Bourassa

PACKACE SANSEW - SVOCe (MATER	2)		Sa	mple Number	8	9	10
	Y		ç	Sample Name	20-03D	20-06	20-09
		DI 007 0040		Sample Matrix	Water	Water	Water
L1 = SANSEW / WATER / Vaughan Sewer Use ByLaw - San	nitary Sewer Discharge	- BL_087_2016		Sample Date	29/07/2020	29/07/2020	29/07/2020
L2 = SANSEW / WATER / Vaughan Sewer Use ByLaw - Stor	rm Sewer Discharge -	BL_087_2016			Brack		
Parameter	Units	RL	LI	LZ	Result	Result	Result
SVOCs							
Bis(2-ethylhexyl)phthalate	mg/L	0.002	0.012	0.0088	< 0.002	< 0.002	< 0.002
di-n-Butyl Phthalate	mg/L	0.002	0.08	0.015	< 0.002	< 0.002	< 0.002
			-				
PACKAGE: SANSEW - VOCs (WATER)			Sa	mple Number	8	9	10
			s	Sample Name	20-03D	20-06	20-09
L1 = SANSEW / WATER / Vaughan Sewer Use ByLaw - San	nitary Sewer Discharge	- BL_087_2016	s	Sample Matrix	Water	Water	Water
L2 = SANSEW / WATER / Vaughan Sewer Use ByLaw - Stor	rm Sewer Discharge -	BL_087_2016		Sample Date	29/07/2020	29/07/2020	29/07/2020
Parameter	Units	RL	L1	L2	Result	Result	Result
VOCs							
VOCs 1,2-Dichlorobenzene	mg/L	0.0005	0.05	0.0056	< 0.0005	< 0.0005	< 0.0005
VOCs 1,2-Dichlorobenzene 1,4-Dichlorobenzene	mg/L mg/L	0.0005	0.05	0.0056	< 0.0005 < 0.0005	< 0.0005 < 0.0005	< 0.0005 < 0.0005
VOCs 1,2-Dichlorobenzene 1,4-Dichlorobenzene Methylene Chloride	mg/L mg/L mg/L	0.0005 0.0005 0.0005	0.05 0.08 2	0.0056 0.0068 0.0052	< 0.0005 < 0.0005 < 0.0005	< 0.0005 < 0.0005 < 0.0005	< 0.0005 < 0.0005 < 0.0005
VOCs 1,2-Dichlorobenzene 1,4-Dichlorobenzene Methylene Chloride Methyl ethyl ketone	mg/L mg/L mg/L mg/L	0.0005 0.0005 0.0005 0.02	0.05 0.08 2 8	0.0056 0.0068 0.0052	< 0.0005 < 0.0005 < 0.0005 < 0.02	< 0.0005 < 0.0005 < 0.0005 < 0.02	< 0.0005 < 0.0005 < 0.0005 < 0.02
VOCs 1,2-Dichlorobenzene 1,4-Dichlorobenzene Methylene Chloride Methyl ethyl ketone Styrene	mg/L mg/L mg/L mg/L mg/L	0.0005 0.0005 0.005 0.02 0.005	0.05 0.08 2 8 0.2	0.0056 0.0068 0.0052	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005
VOCs 1,2-Dichlorobenzene 1,4-Dichlorobenzene Methylene Chloride Methyl ethyl ketone Styrene 1,1,2,2-Tetrachloroethane	mg/L mg/L mg/L mg/L mg/L mg/L	0.0005 0.0005 0.02 0.0005 0.0005 0.0005	0.05 0.08 2 8 0.2 1.4	0.0056 0.0068 0.0052 0.017	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005 < 0.0005	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005 < 0.0005	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005 < 0.0005
VOCs 1,2-Dichlorobenzene 1,4-Dichlorobenzene Methylene Chloride Methyl ethyl ketone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethylene (perchloroethylene)	mg/L mg/L mg/L mg/L mg/L mg/L	0.0005 0.0005 0.02 0.0005 0.0005 0.0005 0.0005	0.05 0.08 2 8 0.2 1.4 1	0.0056 0.0068 0.0052 0.017 0.0044	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005 < 0.0005 < 0.0005	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005 < 0.0005 < 0.0005	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005 < 0.0005 < 0.0005
VOCs 1,2-Dichlorobenzene 1,4-Dichlorobenzene Methylene Chloride Methyl ethyl ketone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethylene (perchloroethylene) Trichloroethylene	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0005 0.0005 0.02 0.0005 0.0005 0.0005 0.0005 0.0005	0.05 0.08 2 8 0.2 1.4 1 0.4	0.0056 0.0068 0.0052 0.017 0.0044 0.008	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005 < 0.0005 < 0.0005 < 0.0005	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005 < 0.0005 < 0.0005 < 0.0005	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005 < 0.0005 < 0.0005 < 0.0005
VOCs 1,2-Dichlorobenzene 1,4-Dichlorobenzene Methylene Chloride Methyl ethyl ketone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethylene (perchloroethylene) Trichloroethylene Chloroform	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0005 0.0005 0.02 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	0.05 0.08 2 8 0.2 1.4 1 0.4 0.04	0.0056 0.0068 0.0052 0.017 0.0044 0.008 0.002	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005	< 0.0005 < 0.0005 < 0.0005 < 0.002 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005
VOCs 1,2-Dichlorobenzene 1,4-Dichlorobenzene Methylene Chloride Methyl ethyl ketone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethylene (perchloroethylene) Trichloroethylene Chloroform cis-1,2-Dichloroethylene	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0005 0.0005 0.02 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	0.05 0.08 2 8 0.2 1.4 1 0.4 0.04 4	0.0056 0.0068 0.0052 0.017 0.0017 0.0044 0.008 0.002 0.0056	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005	< 0.0005 < 0.0005 < 0.0005 < 0.02 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005

CA15792-JUL20 R1

Client: Thurber Engineering Ltd.

Project: 26130, Kirby Rd. EA

Project Manager: Rachel Bourassa

PACKAGE: SANSEW - VOCs - B	TEX (WATER)		Sar	mple Number	8	9	10
			s	ample Name	20-03D	20-06	20-09
L1 = SANSEW / WATER / Vaughan Sewer Use B	ByLaw - Sanitary Sewer Discharge	- BL_087_2016	s	ample Matrix	Water	Water	Water
L2 = SANSEW / WATER / Vaughan Sewer Use B	ByLaw - Storm Sewer Discharge - E	BL_087_2016		Sample Date	29/07/2020	29/07/2020	29/07/2020
Parameter	Units	RL	L1	L2	Result	Result	Result
VOCs - BTEX							
Benzene	mg/L	0.0005	0.01	0.002	< 0.0005	< 0.0005	< 0.0005
Ethylbenzene	mg/L	0.0005	0.16	0.002	< 0.0005	< 0.0005	< 0.0005
Toluene	mg/L	0.0005	0.27	0.002	< 0.0005	< 0.0005	< 0.0005
Xylene (total)	mg/L	0.0005	1.4	0.0044	< 0.0005	< 0.0005	< 0.0005
m-p-xylene	mg/L	0.0005			< 0.0005	< 0.0005	< 0.0005
o-xylene	mg/L	0.0005			< 0.0005	< 0.0005	< 0.0005

EXCEEDANCE SUMMARY

				SANSEW / WATER	SANSEW / WATER
				/ Vaughan	/ Vaughan
				Sewer Use ByLaw -	Sewer Use ByLaw
				Sanitary Sewer	- Storm Sewer
				Discharge -	Discharge -
				BL_087_2016	BL_087_2016
Parameter	Method	Units	Result	L1	L2
)3D					
Total Suspended Solids	SM 2540D	mg/L	39		15
Manganese	SM 3030/EPA 200.8	mg/L	0.157		0.15
)6					
Total Suspended Solids	SM 2540D	mg/L	59		15
Manganese	SM 3030/EPA 200.8	mg/L	0.642		0.15
)9					
Manganese	SM 3030/EPA 200.8	mg/L	2.91		0.15
Total Kjeldahl Nitrogen	SM 4500-N C/4500-NO3- F	mg/L	2.1		1
	Parameter 03D Total Suspended Solids Manganese 06 Total Suspended Solids Manganese 09 Manganese Total Kjeldahl Nitrogen	Parameter Method 03D Total Suspended Solids SM 2540D Manganese SM 3030/EPA 200.8 06 Total Suspended Solids SM 2540D Manganese SM 3030/EPA 200.8 09 Manganese SM 3030/EPA 200.8 Manganese SM 3030/EPA 200.8 Total Kijeldahl Nitrogen SM 4500-N C/4500-NO3- F	Parameter Method Units D3D Total Suspended Solids SM 2540D mg/L Manganese SM 3030/EPA 200.8 mg/L D6 Total Suspended Solids SM 2540D mg/L Manganese SM 3030/EPA 200.8 mg/L D6 state state state Manganese SM 3030/EPA 200.8 mg/L state D9 Manganese SM 3030/EPA 200.8 mg/L Total Kjeldahl Nitrogen SM 4500-N C/4500-NO3- F mg/L	ParameterMethodUnitsResultD3DTotal Suspended SolidsSM 2540Dmg/L39ManganeseSM 3030/EPA 200.8mg/L0.157D6Total Suspended SolidsSM 2540Dmg/L59ManganeseSM 3030/EPA 200.8mg/L59ManganeseSM 3030/EPA 200.8mg/L0.642D9ManganeseSM 3030/EPA 200.8mg/L2.91Total Kjeldahl NitrogenSM 4500-N C/4500-NO3- Fmg/L2.1	SANSEW / WATER / Vaughan Sewer Use ByLaw- Sanitary Sewer Discharge - BL_087_2016 Parameter Method Units Result L1 D3D Total Suspended Solids SM 2540D mg/L 39 Manganese SM 3030/EPA 200.8 mg/L 0.157 P6 Total Suspended Solids SM 2540D mg/L 59 Manganese SM 3030/EPA 200.8 mg/L 0.642 99 Manganese SM 3030/EPA 200.8 mg/L 0.642

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duplicate L		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Sulphate	DIO0563-JUL20	mg/L	2	<1	1	20	103	80	120	NV	75	125
Sulphate	DIO0570-JUL20	mg/L	2	1	8	20	100	80	120	99	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0059-JUL20	mg/L	2	< 2	10	30	105	70	130	nv	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	/ Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0288-JUL20	mg/L	0.01	<0.01	ND	10	92	90	110	100	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0455-JUL20	mg/L	0.06	<0.06	ND	10	109	90	110	71	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recover	y Limits
						(%)	Becoven/	(%)		Recovery	(%)	
						(70)	(%)	Low	High	(%)	Low	High
Mercury (total)	EHG0021-JUL20	mg/L	0.00001	< 0.00001	ND	20	101	80	120	109	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike Recovery	Recover (%	y Limits စ်)	
						(76)	(%)	Low	High	(%)	Low	High	
Silver (total)	EMS0165-JUL20	mg/L	0.00005	<0.00005	ND	20	100	90	110	101	70	130	
Aluminum (total)	EMS0165-JUL20	mg/L	0.001	<0.001	0	20	102	90	110	116	70	130	
Arsenic (total)	EMS0165-JUL20	mg/L	0.0002	<0.0002	8	20	99	90	110	92	70	130	
Cadmium (total)	EMS0165-JUL20	mg/L	0.000003	<0.000003	ND	20	98	90	110	100	70	130	
Cobalt (total)	EMS0165-JUL20	mg/L	0.000004	<0.000004	ND	20	99	90	110	91	70	130	
Chromium (total)	EMS0165-JUL20	mg/L	0.00008	<0.00008	ND	20	106	90	110	120	70	130	
Copper (total)	EMS0165-JUL20	mg/L	0.0002	<0.0002	8	20	101	90	110	89	70	130	
Manganese (total)	EMS0165-JUL20	mg/L	0.00001	<0.00001	1	20	100	90	110	97	70	130	
Molybdenum (total)	EMS0165-JUL20	mg/L	0.00004	<0.00004	16	20	101	90	110	101	70	130	
Nickel (total)	EMS0165-JUL20	mg/L	0.0001	<0.0001	15	20	102	90	110	96	70	130	
Lead (total)	EMS0165-JUL20	mg/L	0.00001	<0.00001	14	20	100	90	110	114	70	130	
Phosphorus (total)	EMS0165-JUL20	mg/L	0.003	0.003	0	20	96	90	110	NV	70	130	
Antimony (total)	EMS0165-JUL20	mg/L	0.0009	<0.0009	ND	20	99	90	110	129	70	130	
Selenium (total)	EMS0165-JUL20	mg/L	0.00004	<0.00004	16	20	98	90	110	95	70	130	
Tin (total)	EMS0165-JUL20	mg/L	0.00006	<0.00006	ND	20	95	90	110	NV	70	130	
Titanium (total)	EMS0165-JUL20	mg/L	0.00005	<0.00005	ND	20	91	90	110	NV	70	130	
Zinc (total)	EMS0165-JUL20	mg/L	0.002	<0.002	ND	20	103	90	110	116	70	130	

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recovery (%	y Limits)
						(70)	(%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0495-JUL20	mg/L	0.01	< 0.01			76	55	120			
Nonylphenol Ethoxylates	GCM0495-JUL20	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0495-JUL20	mg/L	0.01	< 0.01			82	55	120			
Nonylphenol	GCM0495-JUL20	mg/L	0.001	< 0.001			80	55	120			

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ery Limits %)	Spike Recovery	Recovery (%	/ Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0009-AUG20	mg/L	2	<2	NSS	20	103	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike Recovery	Recover	ry Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0009-AUG20	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0009-AUG20	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	CS/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0442-JUL20	No unit	0.05	NA	0		101			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ery Limits %)	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0303-JUL20	mg/L	0.002	<0.002	6	10	105	80	120	116	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-[ENV]GC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits 6)	Spike Recovery	Recover	y Limits
						(76)	(%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0497-JUL20	mg/L	0.0001	<0.0001	ND	30	102	60	140	NSS	60	140
Total												

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-IENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover	y Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0517-JUL20	mg/L	0.002	< 0.002	NSS	30	109	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0517-JUL20	mg/L	0.002	< 0.002	NSS	30	98	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recovery (%	/ Limits)
						(%)	(%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0452-JUL20	mg/L	2	< 2	6	10	96	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits 6)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0012-AUG20	as N mg/L	0.5	<0.5	4	10	103	90	110	110	75	125
Total Kjeldahl Nitrogen	SKA0292-JUL20	as N mg/L	0.5	<0.5	2	10	98	90	110	118	75	125

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	trix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recover (%	y Limits 6)
						(70)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0489-JUL20	mg/L	0.0005	<0.0005	ND	30	99	60	130	105	50	140
1,2-Dichlorobenzene	GCM0489-JUL20	mg/L	0.0005	<0.0005	ND	30	100	60	130	104	50	140
1,4-Dichlorobenzene	GCM0489-JUL20	mg/L	0.0005	<0.0005	ND	30	101	60	130	103	50	140
Benzene	GCM0489-JUL20	mg/L	0.0005	<0.0005	ND	30	99	60	130	103	50	140
Chloroform	GCM0489-JUL20	mg/L	0.0005	<0.0005	ND	30	98	60	130	101	50	140
cis-1,2-Dichloroethylene	GCM0489-JUL20	mg/L	0.0005	<0.0005	4	30	98	60	130	103	50	140
Ethylbenzene	GCM0489-JUL20	mg/L	0.0005	<0.0005	ND	30	101	60	130	105	50	140
m-p-xylene	GCM0489-JUL20	mg/L	0.0005	<0.0005	ND	30	102	60	130	105	50	140
Methyl ethyl ketone	GCM0489-JUL20	mg/L	0.02	<0.02	ND	30	97	50	140	105	50	140
Methylene Chloride	GCM0489-JUL20	mg/L	0.0005	<0.0005	ND	30	95	60	130	97	50	140
o-xylene	GCM0489-JUL20	mg/L	0.0005	<0.0005	ND	30	100	60	130	105	50	140
Styrene	GCM0489-JUL20	mg/L	0.0005	<0.0005	ND	30	102	60	130	105	50	140
Tetrachloroethylene	GCM0489-JUL20	mg/L	0.0005	<0.0005	5	30	100	60	130	104	50	140
(perchloroethylene)												
Toluene	GCM0489-JUL20	mg/L	0.0005	<0.0005	ND	30	100	60	130	104	50	140
trans-1,3-Dichloropropene	GCM0489-JUL20	mg/L	0.0005	<0.0005	ND	30	101	60	130	106	50	140
Trichloroethylene	GCM0489-JUL20	mg/L	0.0005	<0.0005	ND	30	99	60	130	103	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

ellow & White Copy - SGS form or be retained on file in	mm/dd/yy) Yi Signatures may appear on this 1	completion of work.	29 /	H /	ate:	to SGS is	of samples	mission	98. {2} Sul	of sample	sportation	ng and trar	onnandli	sample vollaet	ture:	Signa been provid	hat you have	s acknowledgement I	of samples to SGS i	Note: Submission	ished by (NAME)	Relinqu Revision #:
Ink Copy - Client	mm/dd/yy) Pi	20 (1	291	1	ate:	0			1	(20	E	du	A	ture: W	Signa		24	BOULAS	achel	d By (NAME): R	Sample
			100								-		24	20	-				SU	Special Instructio	ations/Comments/	Observa
																					5	12
						1												iter services the		and the second se		11
																						10
																						9
A STREET WE WE WE																	3					8
																						7
		1	<					1994					-	later	F	0 W	11:0	11		FF	10-09	6
and the second second	7		-	<										Dates	5	00 22	11:0	t			-0-09	on D
		7	7											ater	x	0	1:0	29/07/20		17	0-06	4 2
	7		1	5				-						ter	W	0 23	01:0	29/07/2			0-06	w
		2	7											ater	E	C	2:0	29/07/20		1 T	20-030	N
	2			2								1		ater	5	2	2:0	29/07/20		0	20-03	-
	Sewer Use: S Specify pkg: Vous Water Charac General ggit Na Ba Pp ggit	TSS	Dissolved	Organochlorine or spec	BTEX only Pesticides	VOCs all incl BTEX	F1-F4 only	F1-F4 + RTEY	all incl PAHs, ABNs, CPs	PAHs only	ICP Metals on Sb.As,Ba,Be,B,Cd,Cr,Co, Se,Ag,TI,U,V,Zn	(CI, Na-water)	Metals & Inor	ATRIX	TLES M	ED BOT	TIM	DATE SAMPLED	NC	DENTIFICATI	SAMPLE	
COMMENTS:			Pri	fy othe				Ar			ly Du,Pb,I	uite	gan				NO	VES	DITION (RSC)	OF SITE CON	RECORD	
	zation Pkg Inded I TCLP Indes I TCLP		letals	e							Ao,Ni,) Ha, CrVI	ics	m	Municipality	in TAT)	38 (3 Day m MMER Other:	Reg 347/55	I Texture: Coarse Medium Fine	Res/Park Soi nd/Com Agri/Other	ble 1	
	pecify) TCLP	Other (please sp		est	C P	VO	PHC	CB	C P	SVC		M & I		-Law:	Sewer By		ons:	Other Regulation			ation 153/04:	Regula
			ED	ESTI	EQU	IS R	ALYS	AN										LATIONS	REGU			
MUST BE SUBMITTED	ER CHAIN OF CUSTODY	ER SAMPLES FO	VITH SGS	(POTAB	INKING	TE: DR	NC				-	ue Date	pecify D	IS				- Chau:	thurben	@~ 220	rbour	Email:
	ũ	Days 4 Day SUBMISSION	RIOR TO	2 Day	ENTAT	EPRES	SGS R	v WITH	May A	harge: H FEAS	tional (CONFIR	USH TA	PR				hone:	90.0	2 42	X SOL	Phone Fax:
holidays & weekends). gins next business day	im or on weekends: TAT beg	received after 6p	TAT's ar Samples							-7days)	TAT (5	Regular	R				12	Address:	N	will C	e Oak	P
E/1	itby Kat	QUIRED	(TAT) RI	TIME (OUND	URNAR	T			20	10-		roject #.	VE	MEET	100	101 102	Contact: Atta	in feat	o winsk	103 - 201	Addres
TAGUNG	10 1		P.O.			12		0	196	20	202	1	uotation	0	5	rmation)	leport Info	I (same as P	ineerins	er Eng	any harbol	Comp
11120								1							TION	VFORMA	NVOICE I		N	INFORMATIC	REPORT	
Els Eldes	LAB LIMS #: OAK			1.	1ee	ype: P2	22	- and	: Yest	Present Jpon Re	ng Agent erature l	Cooli Temp		S S	nt: Yes	Seal Prese Seal Intact:	Custody Custody		hr : min)	222	nd Date: 107 nd Time: 117	Receive
								e only	Lab us	tion -	on Sec	ormati	ory Int	Laborat					0	5.9	2	
^{vo:} U14U9U						ent	environm 361	gs.com/ 9-672-0	b: www.s 0 Fax: 5	365 We	05-652-6 (96: 877-	00 Fax: 7	5-652-20 9-672-45	10 Phone: 70; 38 Phone: 51	ON, N6E 25	t., Lakefiek urt, London	ncession (sortium Co	Lakefield: 185 Cc London: 657 Con	Health & Safety	Environment, I	SGS	
					×	TOD	CUS	NOF	HA	und (CDS	Serv	tory	Lahora	ost for	Regu))))	

CA15793-JUL20 R2

26130, Kirby Rd EA

Prepared for

Thurber Engineering Ltd.

First Page

CLIENT DETAILS	3	LABORATORY DETAIL	S
Client	Thurber Engineering Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	103, 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7. Canada		
Contact	Rachel Bourassa	Telephone	705-652-2143
Telephone	905-829-8666 x 263	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	rbourassa@thurber.ca	SGS Reference	CA15793-JUL20
Project	26130, Kirby Rd EA	Received	07/29/2020
Order Number		Approved	08/06/2020
Samples	Water (6)	Report Number	CA15793-JUL20 R2
		Date Reported	08/14/2020

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present:Yes Custody Seal Present:Yes

Chain of Custody Number:014090

Fluoride spike % recovery low, results accepted based on all other qc

RL raised for nits due to S.M

Colour std appears high, but within acceptance criteria

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-16
Legend	17
Annexes	18

CA15793-JUL20 R2

Client: Thurber Engineering Ltd.

Project: 26130, Kirby Rd EA

Project Manager: Rachel Bourassa

ACKAGE: PWQO_L - General Cher	mistry (WATER)		Sample Number	7	8	9	10	11	12
			Sample Name	20-03D	20-03D FF	20-06	20-06 FF	20-09D	20-09D FF
					Dissolved		Dissolved		Dissolved
= PWQO_L / WATER / Table 2 - General - July 199	9 PIBS 3303E		Sample Matrix	Water	Water	Water	Water	Water	Water
			Sample Date	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Parameter	Units	RL	L1	Result	Result	Result	Result	Result	Result
eneral Chemistry									
Total Suspended Solids	mg/L	2			< 2		2		3
Alkalinity	mg/L as CaCO3	2		273		301		582	
Bicarbonate	mg/L as CaCO3	2		273		301		582	
Carbonate	mg/L as CaCO3	2		< 2		< 2		< 2	
ОН	mg/L as CaCO3	2		< 2		< 2		< 2	
Colour	TCU	3		5		4		20	
Conductivity	uS/cm	2		1530		7470		5310	
Furbidity	NTU	0.10		61.1		575		1.09	
Ammonia+Ammonium (N)	as N mg/L	0.04		< 0.04		0.12		2.2	
Phosphorus (total reactive)	mg/L	0.03		< 0.03		< 0.03		< 0.03	
Total Organic Carbon	mg/L	1		< 1		2		8	
Ion Ratio	-	-9999		1.13		1.12		1.06	
Total Dissolved Solids (calculated)	mg/L	-9999		892		4377		3272	
Conductivity (calculated)	uS/cm	-9999		1678		7746		6104	
Langeliers Index 4° C	@ 4° C	-9999		0.65		0.86		1.07	
Saturation pH 4°C	pHs @ 4°C	-9999		7.3		7.06		6.32	

CA15793-JUL20 R2

Client: Thurber Engineering Ltd.

Project: 26130, Kirby Rd EA

Project Manager: Rachel Bourassa

ACKAGE: PWQO_L - Metals and VATER)	I Inorganics		Sample Number	7	8	9	10	11	12	
			Sample Name	20-03D	20-03D FF	20-06	20-06 FF	20-09D	20-09D FF	
					Dissolved		Dissolved		Dissolved	
= PWQO_L / WATER / Table 2 - General - July /	1999 PIBS 3303E		Sample Matrix	Water	Water	Water	Water	Water	Water	
			Sample Date	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020	
Parameter	Units	RL	L1	Result	Result	Result	Result	Result	Result	
etals and Inorganics										
Chloride	mg/L	0.04		340		2300		1600		
Fluoride	mg/L	0.06		0.07		0.06		< 0.06		
Bromide	mg/L	0.05		0.11		0.68		1.08		
Nitrite (as N)	as N mg/L	0.003		0.003# <mdl< td=""><td></td><td>0.03#<mdl#r< td=""><td></td><td>0.03#<mdl#r< td=""><td></td><td></td></mdl#r<></td></mdl#r<></td></mdl<>		0.03# <mdl#r< td=""><td></td><td>0.03#<mdl#r< td=""><td></td><td></td></mdl#r<></td></mdl#r<>		0.03# <mdl#r< td=""><td></td><td></td></mdl#r<>		
						DS		DS		
Nitrate (as N)	as N mg/L	0.006		8.73		0.208		0.057		
Sulphate	mg/L	0.04		28		96		120		
Hardness	mg/L as CaCO3	0.05		581	492	979	833	2810	2610	
Aluminum	μg/L	1	75	1370		1990		70		
Aluminum (0.2µm)	mg/L	0.001	0.015	0.14		0.23		0.009		
Arsenic	μg/L	0.2	5	0.6	< 0.2	0.9	0.2	0.9	1.1	
Boron	μg/L	2	200	15	10	29	19	37	38	
Barium	μg/L	0.02		154	122	393	351	472	432	
Beryllium	μg/L	0.007	1100	0.057	< 0.007	0.095	< 0.007	0.010	0.008	
Cobalt	μg/L	0.004	0.9	1.79	0.656	6.50	2.00	5.82	5.61	
Calcium	mg/L	0.01		185	156	340	293	943	876	
Cadmium	μg/L	0.003	0.5	0.008	0.007	0.070	0.040	0.048	0.046	
Copper	μg/L	0.2	5	2.2	3.0	3.6	1.1	2.6	3.6	
Chromium	μg/L	0.08	100	2.35	0.80	3.40	0.16	0.54	1.19	
Iron	ug/L	7	300	1590	< 7	2410	< 7	97	10	
Potassium	mg/L	0.009		2.90	2.17	8.02	3.83	14.1	14.6	
· · · · · · · · · · · · · · · · · · ·	-									_

CA15793-JUL20 R2

Client: Thurber Engineering Ltd.

Project: 26130, Kirby Rd EA

Project Manager: Rachel Bourassa

Samplers:	Rachel Bourassa
-----------	-----------------

ACKAGE: PWQO L - Metals and	Inorganics		Sample Number	7	8	9	10	11	12
VATER)	U								
,			Sample Name	20-03D	20-03D FF	20-06	20-06 FF	20-09D	20-09D FF
					Dissolved		Dissolved		Dissolved
= PWQO_L / WATER / Table 2 - General - July 1	1999 PIBS 3303E		Sample Matrix	Water	Water	Water	Water	Water	Water
			Sample Date	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Parameter	Units	RL	L1	Result	Result	Result	Result	Result	Result
etals and Inorganics (continued)									
Magnesium	mg/L	0.001		29.1	24.8	31.7	25.0	111	103
Manganese	μg/L	0.01		187	108	970	276	2871	2463
Molybdenum	μg/L	0.04	40	1.10	0.71	5.01	1.86	3.06	2.96
Nickel	μg/L	0.1	25	3.3	1.4	8.5	2.6	10.8	11.5
Sodium	mg/L	0.01		134	112	1420	1180	135	118
Phosphorus	mg/L	0.003	0.01	0.075	< 0.003	0.158	0.004	0.021	0.013
Lead	µg/L	0.01	11~25	1.17	0.11	2.03	0.02	0.08	0.20
Silicon	ug/L	20		10800	7340	8560	4360	9360	8810
Silver	µg/L	0.05	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Strontium	μg/L	0.02		419	356	1140	962	1680	1600
Thallium	µg/L	0.005	0.3	0.037	0.013	0.101	0.049	0.093	0.091
Tin	µg/L	0.06		0.34	0.11	0.66	0.11	0.80	3.68
Titanium	ug/L	0.05		61.0	< 0.05	86.7	0.17	1.85	0.42
Antimony	μg/L	0.09	20	< 0.09	0.12	0.48	0.19	0.34	0.84
Selenium	µg/L	0.04	100	0.13	0.16	0.27	0.10	0.38	0.43
Uranium	μg/L	0.002	5	2.32	1.59	5.11	2.53	10.4	8.92
Vanadium	μg/L	0.01	6	3.02	0.31	4.66	0.29	1.43	1.03
Zinc	μg/L	2	20	5	4	8	< 2	4	7
Cation sum	meq/L	-9999		17.79		82.01		62.81	
Anion Sum	meq/L	-9999		15.77		72.91		59.27	
Anion-Cation Balance	%	-9999		6.02		5.88		2.9	
	difference								

CA15793-JUL20 R2

Client: Thurber Engineering Ltd.

Project: 26130, Kirby Rd EA

Project Manager: Rachel Bourassa

PAC	PACKAGE: PWQO_L - Other (ORP) (WATER)		Sample N	lumber	7	9	11	
				Sample	Name	20-03D	20-06	20-09D
L1 = F	L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E			Sample	Matrix	Water	Water	Water
				Sampl	e Date	29/07/2020	29/07/2020	29/07/2020
P	arameter	Units	RL	L1		Result	Result	Result
Oth	er (ORP)							
р	Н	No unit	0.05	8.6		7.95	7.92	7.39
N	Nercury (dissolved)	mg/L	0.00001			< 0.00001	< 0.00001	< 0.00001

EXCEEDANCE SUMMARY

				PWQO_L / WATER
				/ Table 2 -
				General - July 1999
Deservation	NA-44		D- "	PIBS 3303E
Parameter	Method	Units	Result	L1
20-03D				
Aluminum	SM 3030/EPA 200.8	µg/L	1370	75
Aluminum (dissolved)	SM 3030/EPA 200.8	μg/L	0.14	0.015
Cobalt	SM 3030/EPA 200.8	μg/L	1.79	0.9
Iron	SM 3030/EPA 200.8	μg/L	1590	300
Phosphorus	SM 3030/EPA 200.8	μg/L	0.075	0.01
00.00				
20-06				
Aluminum	SM 3030/EPA 200.8	μg/L	1990	75
Aluminum (dissolved)	SM 3030/EPA 200.8	μg/L	0.23	0.015
Cobalt	SM 3030/EPA 200.8	μg/L	6.50	0.9
Iron	SM 3030/EPA 200.8	μg/L	2410	300
Phosphorus	SM 3030/EPA 200.8	μg/L	0.158	0.01
Uranium	SM 3030/EPA 200.8	μg/L	5.11	5
20-06 FF Dissolved				
Cobalt	SM 3030/EPA 200.8	µg/L	2.00	0.9
20-09D				
Cobalt	SM 3030/EPA 200.8	µg/L	5.82	0.9
Phosphorus	SM 3030/EPA 200.8	μg/L	0.021	0.01
Uranium	SM 3030/EPA 200.8	µg/L	10.4	5
20-09D FF Dissolved				
Cobalt	SM 3030/EPA 200.8	µg/L	5.61	0.9
Phosphorus	SM 3030/EPA 200.8	µg/L	0.013	0.01
Uranium	SM 3030/EPA 200.8	μg/L	8.92	5

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Alkalinity	EWL0445-JUL20	mg/L as CaCO3	2	< 2	0	20	102	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	CS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Spike (%		Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0294-JUL20	mg/L	0.04	<0.04	5	10	100	90	110	89	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	y Limits ၈)	
						(70)	(%)	Low	High	(%)	Low	High	
Nitrite (as N)	DIO0006-AUG20	mg/L	0.003	<0.003	ND	20	94	80	120	100	75	125	
Chloride	DIO0017-AUG20	mg/L	0.04	<0.04	3	20	93	80	120	109	75	125	
Sulphate	DIO0017-AUG20	mg/L	0.04	<0.04	1	20	97	80	120	98	75	125	
Chloride	DIO0032-AUG20	mg/L	0.04	<0.04	1	20	93	80	120	100	75	125	
Bromide	DIO0554-JUL20	mg/L	0.05	<0.05	ND	20	103	80	120	104	75	125	
Nitrite (as N)	DIO0554-JUL20	mg/L	0.003	<0.003	ND	20	94	80	120	100	75	125	
Nitrate (as N)	DIO0554-JUL20	mg/L	0.006	<0.006	ND	20	99	80	120	105	75	125	

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-IENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Spike Recovery		Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Organic Carbon	SKA0299-JUL20	mg/L	1	<1	2	10	93	90	110	87	75	125

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	AC Spike (%) Recovery	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)		
					(%) Recovery (%) Low High	High	(%)	Low	High				
Carbonate	EWL0445-JUL20	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA			
Bicarbonate	EWL0445-JUL20	mg/L as CaCO3	2	< 2	0	10	NA	90	110	NA			
ОН	EWL0445-JUL20	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA			

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove (%	ry Limits 6)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Colour	EWL0461-JUL20	TCU	3	< 3	0	10	115	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0445-JUL20	uS/cm	2	< 2	1	20	98	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low (%	High
Fluoride	EWL0455-JUL20	mg/L	0.06	<0.06	ND	10	109	90	110	71	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recover	y Limits
						(%)	Recoverv	(9	6)	Recovery	(%	.)
							(%)	Low	High	(%)	Low	High
Mercury (dissolved)	EHG0021-JUL20	mg/L	0.00001	< 0.00001	ND	20	101	80	120	109	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	ıtrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike Booovon/	Recover (%	y Limits	Spike Recovery	Recover (%	y Limits ၈)
						(70)	(%)	Low	High	(%)	Low	High
Sodium	EMS0013-AUG20	mg/L	0.01	<0.01	1	20	102	90	110	95	70	130
Silver	EMS0165-JUL20	ug/L	0.05	<0.00005	ND	20	100	90	110	101	70	130
Aluminum	EMS0165-JUL20	ug/L	1	<0.001	0	20	102	90	110	116	70	130
Aluminum (0.2µm)	EMS0165-JUL20	mg/L	0.001	<0.001	0	20	102	90	110	116	70	130
Arsenic	EMS0165-JUL20	ug/L	0.2	<0.0002	8	20	99	90	110	92	70	130
Barium	EMS0165-JUL20	ug/L	0.02	<0.00002	4	20	101	90	110	113	70	130
Beryllium	EMS0165-JUL20	ug/L	0.007	<0.000007	18	20	93	90	110	104	70	130
Boron	EMS0165-JUL20	ug/L	2	<0.002	1	20	96	90	110	NV	70	130
Calcium	EMS0165-JUL20	mg/L	0.01	<0.01	0	20	100	90	110	93	70	130
Cadmium	EMS0165-JUL20	ug/L	0.003	<0.000003	ND	20	98	90	110	100	70	130
Cobalt	EMS0165-JUL20	ug/L	0.004	<0.000004	ND	20	99	90	110	91	70	130
Chromium	EMS0165-JUL20	ug/L	0.08	<0.00008	ND	20	106	90	110	120	70	130
Copper	EMS0165-JUL20	ug/L	0.2	<0.0002	8	20	101	90	110	89	70	130
Iron	EMS0165-JUL20	ug/L	7	<0.007	0	20	100	90	110	NV	70	130
Potassium	EMS0165-JUL20	mg/L	0.009	<0.009	0	20	102	90	110	98	70	130
Magnesium	EMS0165-JUL20	mg/L	0.001	<0.001	0	20	101	90	110	96	70	130
Manganese	EMS0165-JUL20	ug/L	0.01	<0.00001	1	20	100	90	110	97	70	130
Molybdenum	EMS0165-JUL20	ug/L	0.04	<0.00004	16	20	101	90	110	101	70	130
Sodium	EMS0165-JUL20	mg/L	0.01	<0.01	1	20	102	90	110	96	70	130
Nickel	EMS0165-JUL20	ug/L	0.1	<0.0001	15	20	102	90	110	96	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	trix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recover (%	ry Limits 6)
						(76)	(%)	Low	High	(%)	Low	High
Lead	EMS0165-JUL20	ug/L	0.01	<0.00001	14	20	100	90	110	114	70	130
Phosphorus	EMS0165-JUL20	mg/L	0.003	0.003	0	20	96	90	110	NV	70	130
Antimony	EMS0165-JUL20	ug/L	0.09	<0.0009	ND	20	99	90	110	129	70	130
Selenium	EMS0165-JUL20	ug/L	0.04	<0.00004	16	20	98	90	110	95	70	130
Silicon	EMS0165-JUL20	ug/L	20	<0.02	1	20	100	90	110	NV	70	130
Tin	EMS0165-JUL20	ug/L	0.06	<0.00006	ND	20	95	90	110	NV	70	130
Strontium	EMS0165-JUL20	ug/L	0.02	<0.00002	1	20	102	90	110	99	70	130
Titanium	EMS0165-JUL20	ug/L	0.05	<0.00005	ND	20	91	90	110	NV	70	130
Thallium	EMS0165-JUL20	ug/L	0.005	<0.000005	ND	20	97	90	110	111	70	130
Uranium	EMS0165-JUL20	ug/L	0.002	<0.000002	3	20	97	90	110	108	70	130
Vanadium	EMS0165-JUL20	ug/L	0.01	<0.00001	10	20	98	90	110	93	70	130
Zinc	EMS0165-JUL20	ug/L	2	<0.002	ND	20	103	90	110	116	70	130

Metals in aqueous samples - ICP-OES

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits 6)	Spike Recovery	Recovery (%	y Limits)
						(%)	(%)	Low	High	(%)	Low	High
Hardness	EMS0165-JUL20	mg/L as CaCO3	0.05		0	20						

рΗ

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0445-JUL20	No unit	0.05	NA	0		101			NA		

Reactive Phosphorus by SFA

Method: SM 4500-P F | Internal ref.: ME-CA-IENVISFA-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	:
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recover	ry Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Phosphorus (total reactive)	SKA0291-JUL20	mg/L	0.03	<0.03	ND	10	93	90	110	90	75	125
Phosphorus (total reactive)	SKA0305-JUL20	mg/L	0.03	<0.03	8	10	100	90	110	93	75	125

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits 6)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0018-AUG20	mg/L	2	< 2	0	10	101	90	110	NA		

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	CS/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Turbidity	EWL0440-JUL20	NTU	0.10	< 0.10	6	10	99	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination. Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision. LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects. Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects. Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike. RL: Reporting limit RPD: Relative percent difference AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

~ ~ ~	- London: 657 Cor	nsortium Court	t, London,	ON, N6E 2S8 Phon	ie: 519	9-672-45	500 Tol	Free: 87	7-848-	8060 F	ax: 519	-672-0	environi 361	ment									UT	40
ceived By:		Descioned D		Labo	orato	ory Inf	orma	tion S	ection	n - La	b use	only			10.14	194							Page	of
ceived Date: 07 12 7 7200 (mm/dd/	yy)	Custody Se	al Present:	: Yes No]		Co	oling Age	ent Pres	sent:	Yes	No	5	Type	1	ee								
		Custody Se	al Intact:	Yes No	1		Ter	nperatur	e Upon	Receip	ot (°C) _	92.	P'c	. 92	2					1	LAB LIM	s #: CN	415792	2-9
mpany Thurber Encioner		NVOICE INF	ORMATI	ON				0	2.4	-	~~									Carrier			110 1 10	i
ntact: Rachel Bourassa	(same as R	leport Inform	nation)		Qu	otation	#:	20	20	91	66		-					P.O. #					ſ	u
dress: 103 - 2010 Winsten Park	Contact: Atic	2752	Enger	reennes	Pro	ject #:	-	-6	13	2	1						-	Site Lo	cation/IE	: Ki	rby	Ro	EA	
Ne Oakulle ON	Address:	199 2			-	1	Reaula	TAT (5-7da	(2)				URN	AROU	ND TI	ME (T)	AT) RE	QUIRED	husiness	dava (or	aludaatat		
one: 965 829 8666		Sec. Cal	1.1		RU	SHTA	T (Ada	litional	Char	yoj					34	-	S	amples	eceived a	fter 6pm o	or on wee	kends: TA	T begins next busi	iness d
c	Phone:				PLE	EASE (ONFI	RM RU	SH FE	ASIBI	LITY V	NITH S	SGS R		Day		Days	3 D		Days				
ail: rbourassa@thurbe	Eficia:				Spe	cify Du	e Dat	ə:		-			NC	DTE: D	RINKI	NG (PO	TABLE	WATE	R SAMPLI	ES FOR H	IUMAN C	ONSUMP	TION MUST BE S	UBMIT
REG	ULATIONS											ANA	IVS	SIS F	REO	HES	WIT	H SGS [RINKING	WATER	CHAIN O	F CUSTO	DY	DOIVITT
gulation 153/04:	Other Regulatio	ns:	s	ewer By-Law:		N	181		SI	/00	PCB	P	HC	V	OC	Pest	a the	0	ther (a)	ease specifi	v)	TCI	P	
Table 2 Ind/Com Coarse	Reg 347/558	(3 Day min T	AT)	Coanitary	1						-				100						D D	Snee	ity i	
Table 3 Agri/Other Medium] Other:	M	unicipality		(lios						S.A.	13		13.			als			u Pl	TCLP		
				Vaughan	-	Lics C, SAR-		, iN, oM			oclor				123		Zel	15h			ation	pep tests	and the	
		NO	1		NYS.	rgar WS),E	uite	UV Cu, Pb,			Ar			RU		y other	Pri	X		N.	erizia	SWE Exter	Сомм	ENT
	DATE		16.	a san	red	Inol PH,(B(F	IS S	S or		ls, CPs		TEX				r speci	Tac	e		1	AB LIMS #: C/A aby CA aby CONSUMPTIO Adams of CUSTODY TCLP aby CA aby CONSUMPTIO Adams of CUSTODY TCLP aby CA aby CA	8		
SAMPLE IDENTIFICATION	SAMPLED	SAMPLED	# OF BOTTL	ES MATRIX	Filte	S Solution	Aleta	Be,B,C	lino	S Is, ABN	Tot		only	X	only	ides orine o	- A	2/0	2	dell	Cha	LIMS #: OAY)P	
			1.2.1.2	and the second second	ield	etal I CrVI,	ull N	As,Ba,B	AHS	VOC Nol PAP	CBs	-F4	-F4	DCS nel BTE	EX	stic	ste	3	_	Wer	ify pkg		N	
20-030	29/07/20	2:00	23	labla	LL.	530	LG	288	<u>a</u>	S TE	P	ŭ.	1 22	VC	8	Pe	3	0.		Se	Spec			1
ZA-ABDEE	20/07/20	2:00	3	Water			100					Del s			1.13	_	V	-		1	1			
20-06	29/07/20	1:00	23	(1)			1			-	4				_			Vi	1					
20-06 FF	29/07/00	1.00	2	Water	-		1										V			L	1		1000	
20-09	- 10 1120	11:00	22	Water	1.5		1.9	-			1			24	-		1	11	-				And a set	1.74
20-09 FF		11.00	42	Water		-				1							V			V	1			
22 0111		11:00	3	Water		1			2.74		1						1	11	1				a series des	a.l.
		to making				Jan	12-130		1														1.	
and the set of the set	A State of the state of the		100		1.5				_										1				The start	
		1			14		133																3.55.5	
	Station of the		1. 100 - 1																					
	1						1.04																	
vations/Comments/Special Instructions		1.19	1	1		100												10						
	and the second		10 19 C. L.	00													2 der					-		1
ed By (NAME): Kachel Bouras	54	1	Signature:	Ret	de	y	2	ler	_						ate:	F	, 7	9,	20			1		
uished by (NAME): Kachel Prou	RUSSEL	1	Signature:	Pro	5			2	0	1		110			uio	7	-6		217	(mm/dd	/уу)	- Asses	Pink Copy - Client	1

Appendix E

Dewatering Estimates

Parameter	Units	Underpass	Potential Pile Caps for Overpass
Geologic Unit to Dewater		Sand	Sand
Nearest Monitoring Well		BH20-06	BH20-06
Input Hydraulic Conductivity in cm/s (K)	m/s	6.6E-06	6.6E-06
Hydraulic Conductivity converted to m/day	m/day	5.7E-01	5.7E-01
Highest Groundwater level	m	288.3	288.3
Input height of groundwater pressure (H)	m	9.3	4.0
Input dewatering height (h)	m	2.0	2.7
Input length of excavation (x, a)	m	250.0	30.0
Input width of excavation (b)	m	25.0	5.0
Input/calculate radius of trench (rw or rs)	m	12.5	2.5
Length to width ratio	unitless	10.0	6.0
Net water table lowering	m	7.3	1.3
Equation Type		Trench	Trench
Radii of Influence			
Sichardt Equation (Ro based on K, H, h)	m	56.5	10.3
Ro = Sichardt + (rw or rs)	m	69	13
Calculated Flow Rate			
Base groundwater flow	L/day	259,000	22,000
Partial Penetration Factor	unitless	1.00	1.00
Safety factor on groundwater flow	unitless	3	3
Groundwater flow with safety factor	L/day	777,000	66,000
Rainfall entering excavation	mm	50	50
Duration to remove rainfall	hours	24	24
Flow rate to remove rainfall	L/day	313,000	8,000
Budgeted peak flow rate	L/day	1,090,000	74,000

L/s

gal/min

=

=

12.6

167

0.9

11

Dewatering Calculations for Unconfined Scenarios

Flow rate estimates rounded to nearest 1,000 L/day.

Theory and Formulae

Equation 4.0

F

Trench flow in unconfined aquifer Use this equation when a/b > 1.5.

Trench flow in confined Aquifer

DEWATERING

Steady-state flow in confined aquifer

Reference: Powers, J. P., Corwin, A. B., Schmall, Paul C. and Kaeck, W. E. 2007. Construction Dewatering and Groundwater Control: New Methods and Applications, Third Edition, New York; New York: John Wiley & Sons.

Sy to calculate the Radius of Influence of Unconfined aguifer using Bear 1979

The following table shows representative values of specific yield for various geologic materials (from Morris and Johnson 1967):

Material	Specific Yield (%)
Gravel, coarse	21
Gravel, medium	24
Gravel, fine	28
Sand, coarse	30
Sand, medium	32
Sand, fine	33
Silt	20
Clay	6
Sandstone, fine grained	21
Sandstone, medium grained	27
Limestone	14
Dune sand	38
Loess	18
Peat	44
Schist	26
Siltstone	12
Till, predominantly silt	6

The following table provides representative values of specific storage for various geologic materials (Domenico and Mifflin [1965] as reported in Batu [1998]):

Material	S ₅ (ft ⁻¹)
Plastic clay	7.8×10 ⁻⁴ to 6.2×10 ⁻³
Stiff clay	3.9×10 ⁻⁴ to 7.8×10 ⁻⁴
Medium hard clay	2.8×10 ⁻⁴ to 3.9×10 ⁻⁴
Loose sand	1.5×10 ⁻⁴ to 3.1×10 ⁻⁴
Dense sand	3.9×10 ⁻⁵ to 6.2×10 ⁻⁵
Dense sandy gravel	1.5×10 ⁻⁵ to 3.1×10 ⁻⁵
Rock, fissured	1×10 ⁻⁶ to 2.1×10 ⁻⁵
Rock, sound	< 1×10 ⁻⁶

To Convert Divide By To Obtain

- To: Michelle Mascarenhas, P.Eng. HDR Inc. 1000 York Blvd., Suite 300 Richmond Hill, ON L4B 1J8
- From: Alireza Hejazi, P.Eng. David Hill, P.Eng., P.Geo.

June 19, 2021

Thurber File No.: 26130

TECHNICAL MEMORANDUM GROUNDWATER MONITORING PROGRAM MUNICIPAL CLASS EA STUDY FOR KIRBY ROAD WIDENING FROM JANE STREET TO DUFFERIN STREET CITY OF VAUGHAN, ONTARIO

1 INTRODUCTION

Thurber Engineering Ltd. (Thurber) was retained by HDR Inc. (HDR) to conduct a Hydrogeological Investigation in support of the Municipal Class Environmental Assessment (EA) study for the proposed widening of Kirby Road between Jane Street and Dufferin Street in the City of Vaughan, Ontario. The investigation includes groundwater level measurements over a duration of two years. This memorandum summarizes the groundwater levels observed over the first year, from July 2020 to June 2021.

Groundwater monitoring was conducted by Thurber staff on a bi-monthly basis from July 2020 to June 2021 (Table 1 and Table 2 in Appendix A). In addition, eight (8) level loggers were instrumented in selected monitoring wells to record groundwater levels on an hourly basis, to measure seasonal groundwater fluctuations. A barologger was also installed to record barometric pressure to correct level logger readings for atmospheric pressure. A map illustrating the location of the monitoring wells is provided on Figure 1. Table 1 and Table 2 summarize the recorded groundwater levels from all on-site monitoring wells. Hydrographs of these groundwater data are provided in Appendix A.

Between the period of July 21, 2020 and June 23, 2021, seven (7) rounds of water level measurements were collected by Thurber staff from twelve on-site monitoring wells. In general, the groundwater table reflects local topography. The water level elevations in the monitoring wells ranged from 264.3 m to 309.3 m. The highest groundwater level (Elev.309.3 m, depth 1.3 m) was measured in Monitoring Well 20-09S and the lowest water level (Elev. 264.3 m, depth 27.27 m) was measured in Monitoring Well 20-05.

The hydraulic gradient across the site is generally neutral to downward (Table 3 in Appendix A). The magnitude of vertical hydraulic gradients observed at Monitoring Wells 20-09S/D was estimated to be relatively small (<-0.05 m/m) and can be considered as near neutral gradient.

The hydrographs in Appendix A illustrate the seasonal fluctuation in the groundwater levels. Higher groundwater levels were observed during the winter and spring months (December to May), and lower levels were observed during the summer and autumn months (July to November). The range in seasonal fluctuation in each well was from 0.3 m (in Monitoring Well 20-12D) to 2.5 m (in Monitoring Well 20-01) over the course of the monitoring period.

2 CLOSURE

We trust this memo meets your requirements. If you have any questions or require further information, please contact the undersigned at your convenience.

Yours truly,

Thurber Engineering Limited

reco

Alireza Hejazi, Ph.D., P.Eng. Senior Hydrogeologist and Environmental Engineer

David Hill, M.A.Sc., MBA, P.Eng., P.Geo. Senior Hydrogeologist / Review Engineer

Attachments:

Figure 1 - Monitoring Well Location Map Appendix A - Measured Groundwater Levels and Hydrographs

UTM 17 NAD 83

KIRBY ROAD CLASS EA STUDY VAUGHAN, ONTARIO HDR INC.

BOREHOLE AND MONITORING WELL LOCATIONS

FIGURE 1

	DRAWN BY	AH
	DESIGNED BY	АН
n 00 1	APPROVED BY	DH
	SCALE	1:12,000
	DATE	JULY 22, 2020
	PROJECT No.	26130

Appendix A Measured Water Levels and Hydrographs

Monitoring Well ID	Ground Elevation (m)	21-Jul-2020	28-Jul-2020	25-Sep-2020	20-Nov-2020	14-Jan-2021	17-Mar-2021	23-Jun-2021
BH20-01	271.4	268.71	268.64	268.21	268.49	269.68	270.32	269.03
BH20-03-S	272.7	dry	dry	dry	dry	270.32	270.89	269.91
BH20-03-D	272.7	268.33	268.25	267.58	267.28	267.51	268.74	268.14
BH20-05	291.0	264.95	264.99	264.83	264.72	265.45	264.53	264.31
BH20-06	291.5	288.37	288.33	288.13	288.10	288.98	288.94	288.48
BH20-07	298.2	295.95	295.92	295.58	295.58 295.74		296.16	296.08
BH20-09-S	310.7	308.81	308.91	308.70	308.95	309.28	309.34	308.75
BH20-09-D	310.7	308.11	308.93	308.70	308.93	309.30	309.19	308.88
BH20-10-S	291.7	dry	dry	dry	dry	290.49	290.67	dry
BH20-10-D	291.7	dry	dry	dry	dry	dry	285.93	dry
BH20-12-S	295.6	dry	dry	dry	292.78	292.79	292.71	dry
BH20-12-D	295.6	285.47	285.40	285.09	285.13	285.13	285.13	285.11

Table 2 - Measured Groundwater Levels at Monitoring Wells (Depth: metres below ground surface)

Monitoring Well ID	Well Depth (m)	21-Jul-2020	28-Jul-2020	25-Sep-2020	20-Nov-2020	14-Jan-2021	17-Mar-2021	23-Jun-2021
BH20-01	4.6	2.73	2.80	3.23	2.95	1.76	1.12	2.41
BH20-03-S	3.0	dry	dry	dry	dry	2.41	1.84	2.82
BH20-03-D	7.6	4.39	4.47	5.14	5.44	5.21	3.98	4.58
BH20-05	29.1	26.02	25.98	26.14	26.25	25.52	26.44	26.66
BH20-06	6.6	3.12	3.16	3.36	3.39	2.51	2.55	3.01
BH20-07	4.4	2.26	2.29	2.63	2.47	1.71	2.05	2.13
BH20-09-S	3.0	1.89	1.79	2.00	1.75	1.42	1.36	1.95
BH20-09-D	6.0	2.57	1.75	1.98	1.75	1.38	1.49	1.80
BH20-10-S	2.8	dry	dry	dry	dry	1.18	1.00	dry
BH20-10-D	5.9	dry	dry	dry	dry	dry	5.80	dry
BH20-12-S	2.9	dry	dry	dry	2.81	2.80	2.88	dry
BH20-12-D	10.7	10.18	10.25	10.56	10.52	10.52	10.52	10.54

Table 3 - Calculated Vertical Hydraulic Gradient

Monitoring Well ID	21-Jul-2020	28-Jul-2020	25-Sep-2020	20-Nov-2020	14-Jan-2021	17-Mar-2021	23-Jun-2021
BH20-03-S/D	-	-	-	-	0.61	0.47	0.39
BH20-09-S/D	0.23	-0.01	0.00	0.01	-0.01	0.05	-0.04
BH20-10-S/D	-	-	-	-	-	1.57	-
BH20-12-S/D	-	-	-	1.01	1.01	1.00	-

Notes:

Negative values indicate an upward gradient; positive values indicate a downward gradient.

'-' indicates that the vertical hydraulic gradient could not be estimated due to water level measurement(s) for one or both wells being unavailable.

273 Ground Elevation: 272.7 masl 272 271 270 269 268 267 266 - $\frac{200}{100} - \frac{100}{3} - \frac{$ Ground Elevation ▲ BH20-03D Manual Measurement BH20-03D Electronic Measurement

Hydrograph of BH20-03D

Water Level (masl)

▲ BH20-05 Manual Measurement — BH20-05 Electronic Measurement — Ground Elevation

Water Level (masl)

Ground Elevation: 298.2 masl

Hydrograph of BH20-07

BH20-07 Manual Measurement — BH20-07 Electronic Measurement — Ground Elevation

Water Level (masl)

Hydrograph of BH20-09S/D

- To: Michelle Mascarenhas, P.Eng. HDR Inc. 1000 York Blvd., Suite 300 Richmond Hill, ON L4B 1J8
- From: Alireza Hejazi, P.Eng. David Hill, P.Eng., P.Geo.

June 01, 2022

Thurber File No.: 26130

TECHNICAL MEMORANDUM GROUNDWATER MONITORING PROGRAM MUNICIPAL CLASS EA STUDY FOR KIRBY ROAD WIDENING FROM JANE STREET TO DUFFERIN STREET CITY OF VAUGHAN, ONTARIO

1 INTRODUCTION

Thurber Engineering Ltd. (Thurber) was retained by HDR Inc. (HDR) to conduct a Hydrogeological Investigation in support of the Municipal Class Environmental Assessment (EA) study for the proposed widening of Kirby Road between Jane Street and Dufferin Street in the City of Vaughan, Ontario. The investigation includes groundwater level measurements over a duration of two years. This memorandum summarizes the groundwater levels observed over two years, from July 2020 to May 2022.

Groundwater monitoring was conducted by Thurber staff on a bi-monthly basis from July 2020 to May 2022 (Table 1 and Table 2 in Appendix A). In addition, eight (8) level loggers were instrumented in selected monitoring wells to record groundwater levels on an hourly basis, to measure seasonal groundwater fluctuations. A barologger was also installed to record barometric pressure to correct level logger readings for atmospheric pressure. A map illustrating the location of the monitoring wells is provided on Figure 1. Table 1 and Table 2 summarize the recorded groundwater levels from all on-site monitoring wells. Hydrographs of these groundwater data are provided in Appendix A.

Between the period of July 21, 2020 and May 20, 2022, 13 rounds of water level measurements were collected by Thurber staff from twelve on-site monitoring wells. In general, the groundwater table reflects local topography. The water level elevations in the monitoring wells ranged from 263.9 m to 309.4 m. The highest groundwater level (Elev.309.4 m, depth 1.3 m) was measured in Monitoring Well 20-09D and the lowest water level (Elev. 263.9 m, depth 27.1 m) was measured in Monitoring Well 20-05.

The hydraulic gradient across the site is generally neutral to downward (Table 3 in Attachment A). The magnitude of vertical hydraulic gradients observed at Monitoring Wells 20-09S/D was estimated to be relatively small (<-0.05 m/m) and can be considered as near neutral gradient.

The hydrographs in Appendix A illustrate the seasonal fluctuation in the groundwater levels. Higher groundwater levels were observed during the winter and spring months (December to May), and lower levels were observed during the summer and autumn months (July to November). The range in seasonal fluctuation in each well was from 0.7 m (in Monitoring Well 20-12D) to 3.1 m (in Monitoring Well 20-03D) over the course of the monitoring period.

2 CLOSURE

We trust this memo meets your requirements. If you have any questions or require further information, please contact the undersigned at your convenience.

Yours truly,

Thurber Engineering Limited

reco

Alireza Hejazi, Ph.D., P.Eng. Senior Hydrogeologist and Environmental Engineer

David Hill, M.A.Sc., MBA, P.Eng., P.Geo. Senior Hydrogeologist / Review Engineer

Attachments:

Figure 1 - Monitoring Well Location Map Appendix A - Measured Groundwater Levels and Hydrographs

UTM 17 NAD 83

KIRBY ROAD CLASS EA STUDY VAUGHAN, ONTARIO HDR INC.

BOREHOLE AND MONITORING WELL LOCATIONS

FIGURE 1

	DRAWN BY	AH
	DESIGNED BY	АН
n 00 1	APPROVED BY	DH
	SCALE	1:12,000
	DATE	JULY 22, 2020
	PROJECT No.	26130

Appendix A Measure Water Levels and Hydrographs

Table 1 - Measured Groundwater Levels at Monitoring Wells (Elevation: metres above sea level)

Monitoring Well ID	Ground Elevation (m)	21-Jul-2020	28-Jul-2020	25-Sep-2020	20-Nov-2020	14-Jan-2021	17-Mar-2021	23-Jun-2021	30-Jul-2021	20-Sep-2021	26-Nov-2021	26-Jan-2022	9-Mar-2022	20-May-2022
BH20-01	271.4	268.7	268.6	268.2	268.5	269.7	270.3	269.0	269.1	269.0	270.1	269.6	270.6	270.1
BH20-03-S	272.7	dry	dry	dry	dry	270.3	270.9	269.9	270.1	270.1	270.9	frozen	270.0	damaged
BH20-03-D	272.7	268.3	268.2	267.6	267.3	267.5	268.7	268.1	267.8	267.6	269.5	269.0	damaged	269.6
BH20-05	291.0	265.0	265.0	264.8	264.7	265.5	264.5	264.3	264.3	263.9	264.2	263.9	264.1	264.3
BH20-06	291.5	288.4	288.3	288.1	288.1	289.0	288.9	288.5	288.7	288.8	288.4	289.0	290.5	289.5
BH20-07	298.2	295.9	295.9	295.6	295.7	296.5	296.2	296.1	296.2	296.1	295.7	frozen	295.8	296.4
BH20-09-S	310.7	308.8	308.9	308.7	309.0	309.3	309.3	308.8	308.9	308.9	309.2	308.7	309.3	309.3
BH20-09-D	310.7	308.1	308.9	308.7	308.9	309.3	309.2	308.9	308.9	308.8	309.2	308.6	309.4	309.3
BH20-10-S	291.7	dry	dry	dry	dry	290.5	290.7	dry	290.0	289.4	289.2	289.5	dry	290.2
BH20-10-D	291.7	dry	dry	dry	dry	dry	285.9	dry	285.9	285.9	dry	286.0	289.3	287.2
BH20-12-S	295.6	dry	dry	dry	292.8	292.8	292.7	dry	dry	dry	dry	frozen	dry	292.8
BH20-12-D	295.6	285.5	285.4	285.1	285.1	285.1	285.1	285.1	285.1	285.1	285.1	frozen	285.3	285.8

Table 2 - Measured Groundwater Levels at Monitoring Wells (Depth: metres below ground surface)

Monitoring Well ID	Well Depth (m)	21-Jul-2020	28-Jul-2020	25-Sep-2020	20-Nov-2020	14-Jan-2021	17-Mar-2021	23-Jun-2021	30-Jul-2021	20-Sep-2021	26-Nov-2021	26-Jan-2022	9-Mar-2022	20-May-2022
BH20-01	4.6	2.7	2.8	3.2	3.0	1.8	1.1	2.4	2.3	2.4	1.3	1.9	0.8	1.3
BH20-03-S	3.0	dry	dry	dry	dry	2.4	1.8	2.8	2.7	2.7	1.8	frozen	2.7	damaged
BH20-03-D	7.6	4.4	4.5	5.1	5.4	5.2	4.0	4.6	4.9	5.1	3.3	3.7	damaged	3.1
BH20-05	29.1	26.0	26.0	26.1	26.3	25.5	26.4	26.7	26.7	27.1	26.8	27.0	26.8	26.7
BH20-06	6.6	3.1	3.2	3.4	3.4	2.5	2.6	3.0	2.8	2.7	3.1	2.5	1.0	2.0
BH20-07	4.4	2.3	2.3	2.6	2.5	1.7	2.0	2.1	2.0	2.1	2.5	frozen	2.4	1.8
BH20-09-S	3.0	1.9	1.8	2.0	1.7	1.4	1.4	1.9	1.8	1.8	1.5	2.0	1.4	1.4
BH20-09-D	6.0	2.6	1.8	2.0	1.8	1.4	1.5	1.8	1.8	1.9	1.5	2.1	1.3	1.3
BH20-10-S	2.8	dry	dry	dry	dry	1.2	1.0	dry	1.6	2.3	2.5	2.2	dry	1.5
BH20-10-D	5.9	dry	dry	dry	dry	dry	5.8	dry	5.8	5.8	dry	5.8	2.5	4.6
BH20-12-S	2.9	dry	dry	dry	2.8	2.8	2.9	dry	dry	dry	dry	frozen	dry	2.8
BH20-12-D	10.7	10.2	10.3	10.6	10.5	10.5	10.5	10.5	10.5	10.5	10.6	frozen	10.3	9.9

Table 3 - Calculated Vertical Hydraulic Gradient

Monitoring Well ID	21-Jul-2020	28-Jul-2020	25-Sep-2020	20-Nov-2020	14-Jan-2021	17-Mar-2021	23-Jun-2021	30-Jul-2021	20-Sep-2021	26-Nov-2021	26-Jan-2022	9-Mar-2022	20-May-2022
BH20-03-S/D	-	-	-	-	0.61	0.47	0.39	0.48	0.54	0.32	-	-	-
BH20-09-S/D	0.23	-0.01	0.00	0.01	-0.01	0.05	-0.04	0.02	0.04	0.00	0.02	-0.05	-0.03
BH20-10-S/D	-	-	-	-	-	1.57	-	1.36	1.15	-	1.17	-	1.01
BH20-12-S/D	-	-	-	1.01	1.01	1.00	-	-	-	-	-	-	0.92

Notes:

Negative values indicate an upward gradient; positive values indicate a downward gradient.

1.4 indicates that the vertical hydraulic gradient could not be estimated due to water level measurement(s) for one or both wells being unavailable.

Hydrograph of BH20-09S/D

Hydrograph of BH20-01

